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Overview

• Analysis vs. Synthesis Regularization

• Local Parameterization of Analysis Regularization

• Identifiability and Stability

• Numerical Evaluation

• Perspectives
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é

shift invariant wavelet frameIdentity

⇥k : k-sparse signals

1



Examples of Signal Model

C
r
e
d
i
t
t
o
G
.
P
e
y
r
é
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Noise robustness ?
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Except for y 2 H, if ȳ is close enough from y,
then x(ȳ) is a solution of P(ȳ,�).

Theorem 1

A�ne function: ȳ 7! x(ȳ) = A�

⇤
ȳ � �ADIs

Analysis is Piecewise Affine

i.e solutions of P(y,�) and P(y + ",�) lives in the same GJ .

Main idea: GJ is stable,

definition in few minutes

GJ

GJ 0

y + " = �x
y = �x
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Sketch of the Proof
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I = supp(D⇤
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Problem : Lasso

x
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||y � �x||22 + �||D⇤

x||1 P(y,�)

Subspace of analysis

KerD⇤
J = GJ

— I, J, s = sign(D

⇤
x

?
) are fixed by x

?

— We fix observations y
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First-order conditions of Lasso

Gradient Subdi↵erential
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Open question

Smallest union of subspace containing H ?
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ȳ 7! x(ȳ) = A�⇤
ȳ � �ADIs

— Consider x(y) as a mapping of observations ȳ 7! x(ȳ)

— Check that x(ȳ) is indeed solution of P(ȳ,�)

Use of first order conditions

— Fix ȳ close enough to have sign(D

⇤
x(y)) = sign(D

⇤
x(ȳ))

Sign stability

End of the Proof
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— continuous

y 7! x

?(y) is :

Property given by sign stability

Useful for :

— Robustness study

— SURE denoising risk estimation

— Inverse problem on �x

x(ȳ) = A�⇤
ȳ � �ADIs

Remember !

Inverse of � on GJ

— locally a�ne
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Identifiability: x0 unique solution of P(�x0, 0)

{x0}
?
= argmin

�x=�x0

||D⇤
x||1

�! Restrictive condition !

But gives a stability results for small noise.

Assumption: GJ must be stable for small values of �

Strategy: P(y,�) is almost P(y, 0) for small values of �

Identifiability
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F (s) = min
w2KerDJ

||⌦s� w||1

Algebraic criterion on sign vector

(convex ! computable)

If F (sign (D⇤
Ix0)) < 1 then x0 is identifiable.

Let x0 2 RN
be a fixed vector, and J = I

c
where I = I(D

⇤
x0).

Theorem 2

Suppose that Ker� \ GJ = {0}.

Specializes to Fuchs results for synthesis (D = Id)

Noiseless and Sign Criterion
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G(s) = ||�s||1
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orthonormal basis of Ker�
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+MDI

Only other work on analysis recovery

[Nam 2011]“Cosparse” model

Theorem
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�!0

x0(�x0)

x0(�x0) solution of P(0)

)

x�(�x0) = A�⇤�x0 � �ADIs

Idea: Study P(y,�) for � ⇡ 0

lim
�!0

x�(�x0) = A�⇤�x0 = x0

F (sign(D

⇤
x�(�x0)) < 1 ) x�(�x0) unique solution

Sketch of the Proof
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Generalization of Theorem 2 : Yes, if ||w|| small enough

Condition : sign(D

⇤
x�(y)) = sign(D

⇤
x0)

Question: And for an arbitrary noise ?

F (sign(D⇤
x0)) < 1 gives

• identifiability

• small noise robustness

Suppose we observe y = �x0 + w

Does argmin

�x=y

||D⇤
x||1 recovers x0 +A�

⇤
w ?

Small Noise Recovery
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F (sign(D

⇤
I

x))
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ARC(I) = max

x2GJ

F (sign(D

⇤
I

x))

identifiability of vector ! identifiability of support

Settings: y = �x0 + w, with w bounded noise.

then x�(y) is the unique solution of P(y,�) and

||x�(ȳ)� x0|| = O(�)

Theorem 3

Suppose ARC(I) < 1 and � > K
||w||

1�ARC(I)

Noisy and Support Criterion



sign support

Noiseless

Noisy

F (s) = min
w2KerDJ

||⌦s� w||1

Vector identifiability Support identifiability

Remember !

ARC(I) = max

x2GJ

F (sign(D

⇤
I

x))
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How far are we from a necessary condition ?

We give a su�cient condition for identifiability.

From Theory to Numerics



Overview

• Analysis vs. Synthesis Regularization

• Local Parameterization of Analysis Regularization

• Identifiability and Stability

• Numerical Evaluation

• Perspectives
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Proximal operator

proxf (x) = argmin

u2RN

⇢
f(u) +

1

2

||u� x||22
�

f l.s.c convex function from C convex of an Hilbert H in R.

Proximal Operator

Fundamental examples:

proxiC = PC

prox||·||1 = S1
T .
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Primal-dual schemes

How to Solve These Regularizations ?
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Unconstrained formulation

F (s) = min
w2RN

||⌦s� w||1 + iD(w)

Prox

P||·||1=1 PD



Computing Criterions

ARC(I) = max

x2GJ

F (sign(D

⇤
I

x))

6 wARC(I) = max

s2{�1,1}|J|
F (s)

6 oARC(I) = ||⌦||1!1 easy

non-convex

non-convex

ARC di�cult to compute (non-convex)

Unconstrained formulation

F (s) = min
w2RN

||⌦s� w||1 + iD(w)

Prox

P||·||1=1 PD
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D redundant Gaussian i.i.d matrix N ⇥ P

||D⇤
x0||0 < P �N ) x0 = 0 !

Sparsity ||D⇤
x0||0 is not a good parameter

Good one : DOF(x) = dimGJ

More on Signal Models

⇥ =
[

k2{1...P}

⇥k where ⇥k = {GJ \ dimGJ = k}

Signal model : “Union of subspace”



||x||0 = DOF(x)

Credit to C. Dossal

R
e
c
o
v
e
r
y
r
a
t
e

Identifiability

F (sign(D⇤
x)) < 1

ARC(I(D⇤
x)) < 1

Compressed sensing : Q ⌧ N

1) Synthesis results

Random Settings



Random Settings

2) Analysis results D,� Gaussian i.i.d random matrices
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�! Strong unstability

Many dependancies between columns

Close to `2 ball !

Random Settings

2) Analysis results D,� Gaussian i.i.d random matrices
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D⇤ = r,� = Id

Limits : TV Instability

“Box”

F (s) = 1� "

+1
�1

+1

“Staircase”

F (s) = 1

No noise stability

even for small one

+1

⇥k : piecewise constant signals with k � 1 step.
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Signal Model : Characteristic functions sum

⇥2 : x0 = 1[a,b] + 1[c,d]

Fused Lasso

argmin

x2RN

1

2

||y � �x||22 subject to

⇢
||rx||1 6 s1

||x||1 6 s2
"Id⌦DIF

Overlap

1

No overlap

1
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[a, b] \ [c, d] = ; ) 2 situations

F (sign(D⇤
x0)) > 1

no noise robustness

|c� b| 6 ⇠(")

strong noise robustness

F (sign(D⇤
x0)) = ARC(I) < 1

|c� b| > ⇠(")

Haar : similar results
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— Analysis regularization is robust

— Geometry (union of subspaces) : key concept for recovery

— Sparsity is not univoquely defined

Take-Away Messages



Overview

• Analysis vs. Synthesis Regularization

• Local Parameterization of Analysis Regularization

• Identifiability and Stability

• Numerical Evaluation

• Perspectives
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— Total Variation identifiability

Existence of a better criterion to ensure noisy recovery ?

What’s Next ?

Work initiated by Chambolle in TV

— Continuous model

— Larger class of priors J

Block sparsity || · ||p,q

— Real-world recovery results

Almost equal support recovery

Deterministic theorem ! treat the noise as a random variable

— Support identifiability with Gaussian, Poisson noise
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Any questions ?

Thanks
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