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¢Y minimization is NP-hard

¢4 prior: J,(a) = Z ;| convex (norms) for ¢ > 1

A d,




“Ideal” sparsity prior: Jo(a) = | {2\ a; # 0} |

¢Y minimization is NP-hard

¢4 prior: J,(a) = Z ;| convex (norms) for ¢ > 1
i
4 dy A A
: * * , *
q=20 qg=0.5 g=1 g=1.5 g =2

¢! norm: convexification of ¢° prior
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narse Regularizations

( Synthesis) (Analysis}

argmin —Hy Val; + Alal; argmin —Hy O3 + A D" x|y
aERE rERN

V=0 x=Da«

£ 0

Sparse approx. of * in D Correlation of x* and D sparse
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z* € argmin —H?/ Ozl; + A|D*z|r Py, A)
rERN

I =supp(D*z*),J =1I°

peﬁnition

]Ker[ﬁ}::gj

- J

Signal model : “Unton of subspace”

©= |J Ok where ©p={G,\ dimG, =k}
kc{l...P}

I*EEQJ

Hypothesis: Ker ® N Ker D* = {0}
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X _F—Remember !

Synthesis
a* = argmin —Hy Valz + Alaf:
a€ER@
Analysis
r* = argmin —Hy dx|5 + N\| D x|, Py, )
xRN
A—0
r* = argmin | D" x|, P(y,0)

Pr=y



- Toward a Better Understanding

Local behavior 7

Properties of z* solution of P(y, A) as a function of y



Joward a Better Understanding

Local behavior 7

Properties of z* solution of P(y, A) as a function of y

Noiseless identifiability 7

Is ¢ the unique solution of P(®xy,0) 7



-Toward a Better Understanding

Local behavior 7

Properties of z* solution of P(y, A) as a function of y

Noiseless identifiability 7

Is ¢ the unique solution of P(®xy,0) 7

Noise robustness ?

What can we say about |z* — x| for noisy observations ?
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From Synthesis to Analysis Results _ .

— Previous works in synthesis
Fuchs, Tropp, Dossal|: address these questions

— Similar problem but much more difficulties in analysis

Geometry of the problem 7
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'.-! .|E' Analysis is Piecewise Affine

Main idea: Gy is stable,
i.e solutions of P(y,A) and P(y + £, \) lives in the same G .

y+e=>x

= Oy
Gy /

GJ

definition in few minutes

Affine function: y — z(y) = A®*y — AAD;s

Theorem 1

Except for y & ’H if y is close enough from v,
then x(gy) is a solution of P(y, A).
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Sketch of the Proof

Problem : Lasso

x” € argmin —Hy Ozl; + A|D*z|1 Py, \)
rERN

Support
I =supp(D*z*),J =I°
Subspace of analysis
Ker D} =G
Hypothesis
KerdNg; = {O}

— We fix observations y
— I, J,s = sign(D*x*) are fixed by z*
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-First Order Conditions

r” € argmin —Hy Pzl +AD*zlt Py, )

rceRN

Non differentiable problem
r* is a minimum of P(y, A) if, and only if, 0 € Jf(x*)

First-order conditions of Lasso

z* solution of P(y,\) & Jo € X,(2%),|0]o0 < 1

>, () = {0 e R\ @ (@2 — y) + ADys + D0, = o}

Gradient Subdifferential
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Ad* inverse of ® on G
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-A Solution of Lasso

x(y) € arglg}m —Hy |3 + N D*z|;
recyg

How to implicit a solution 7
" Pr(y) = Py — ADrs — ADjo
Non-inversible

Ad* inverse of ® on G

Ao+ | Ao = (Pi6,)
A(I) |<I>(QJ)J‘ — O

x(y) = APy — AAD;s —ANAD jo
=0 (z(y) €G,)
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- Transition Space

\

H:{yERQ\HfL‘ERN: min  |ofe =1

o €3y ()

/

H : first order conditions saturation — “jump” from G; to G

e H

Open question

(Smallest union of subspace containing H ?J G,




of the Proof

— Consider z(y) as a mapping of observations ¢ — x(y)

yr— x(y) =A®"y — AAD;s



A w +End of the Proof

— Consider z(y) as a mapping of observations ¢ — x(y)

yr— x(y) =A®"y — AAD;s

— Fix gy close enough to have sign(D*z(y)) = sign(D*z(y))

Sign stability



-End of the Proof

— Consider z(y) as a mapping of observations 4 — z(%)

yr— x(y) =A®"y — AAD;s

— Fix gy close enough to have sign(D*z(y)) = sign(D*z(y))

Sign stability

— Check that z(g) is indeed solution of P(g, A)

Use of first order conditions
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-Remember !

x(y) = APy — AADgs

A ‘

y o 2t (y) s - » Inverse of ® on G

— continuous

— locally afline —
Property given by sign stability
Usetul for :
— Robustness study

— SURE denoising risk estimation

— Inverse problem on ®x
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-ldentifiability

Identifiability: xy unique solution of P(®xg, 0)
? . )
{xo} = argmin |D*z|;

(IDCUZ@QZQ

Strategy: P(y, ) is almost P(y,0) for small values of A

Assumption: Gy must be stable for small values of A

—— Restrictive condition !

But gives a stability results for small noise.
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Algebraic criterion on sign vector

Q=D7(P*PA —1d)D;

F(s)= min_ |Qs — w|
weKer Dy

(convex — computable)

Theorem 2

Let 2o € RN be a fixed vector, and J = I° where I = I(D*zy).
Suppose that Ker® N G; = {0}.

If F (sign (Djzg)) < 1 then zq is identifiable.

-

Specializes to Fuchs results for synthesis (D = 1d)
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A Nam et al. Results

“Cosparse” model ‘Nam 2011]
Only other work on analysis recovery
' = (MDj)"MD; M* orthonormal basis of Ker ®

G(s) = |I's|oo

Theorem
\

Let 7o € RY be a fixed vector, and J = I where | = I(D*xg).

Suppose that Ker® NGy = {0}.
If G (sign (Djzo)) < 1 then zq is identifiable.

- J

More intrinsic criterion

— But no noise robustness, even for small ones



-Sketch of the Proof

Idea: Study P(y, A) for A = 0
) (Pxg) = AD*Pxrg — AAD;s



-Sketch of the Proof

Idea: Study P(y, A) for A = 0
) (Pxg) = AD*Pxrg — AAD;s

A small enough to have sign(D*z ) (Pxg)) = sign(D*x)



-Sketch of the Proof

Idea: Study P(y, A) for A = 0
) (Pxg) = AD*Pxrg — AAD;s

A small enough to have sign(D*z ) (Pxg)) = sign(D*x)

lim x)(Pzg) = AD" Py = xg
A—0



Sketch of the Proof

Idea: Study P(y, A) for A = 0
) (Pxg) = AD*Pxrg — AAD;s

A small enough to have sign(D*z ) (Pxg)) = sign(D*x)

lim x)(Pzg) = AD" Py = xg
A—0

z)(Pxg) solution of P(A) and zx(Pxg) - zo(Pxp)
%
\

zo(Pxg) solution of P(0)



-Sketch of the Proof

Idea: Study P(y, A) for A = 0
) (Pxg) = AD*Pxrg — AAD;s

A small enough to have sign(D*z ) (Pxg)) = sign(D*x)

lim x)(Pzg) = AD" Py = xg
A—0

z)(Pxg) solution of P(A) and zx(Pxg) - zo(Pxp)
%
\

zo(Pxg) solution of P(0)

F(sign(D*x\(Pxg)) < 1 = z)(Pxy) unique solution
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-Small Noise Recovery

Suppose we observe y = ®xg + w

Does argmin |D*z|; recovers xg + A®*w 7
Pr=y

Generalization of Theorem 2 : Yes, if |w]| small enough

Condition : sign(D*zy(y)) = sign(D*xo)

F(sign(D*xp)) < 1 gives
o identifiability
e small noise robustness

QQuestion: And for an arbitrary noise 7
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A Noisy and Support Criterion

Settings: y = ®xy + w, with w bounded noise.

identifiability of vector — identifiability of support

ARC(I) = max F(sign(D7x))
rcYg

Theorem 3
.

||

K
Suppose ARC(I) <1 and \ > [~ ARC(])

then x(y) is the unique solution of P(y, A) and
zA(§) — xo| = O(N)




Noiseless

Vector identifiability

ARC(I) = max F(sign(D7jx))

support

Noisy

Support identifiability
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#X k- From Theory to Numerics

We give a sufficient condition for identifiability:.

How far are we from a necessary condition 7
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-Proximal Operator

f l.s.c convex function from C' convex of an Hilbert H in R.

Proximal operator

. 1 )
pros (a) = argmiin { £(u) + 3 u ~ o13
ueRN J

Fundamental examples:

1
pI'OX” N = ST'

prox; , = Fco
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X How to Solve These Regularizations :

Primal-dual schemes

" L(g,u) = 2|y — g]* + Mu|:

min L(K(x)) where < K(z) = (bz, D*z)

xRN

\\

Alternating Direction Method of Multipliers [Chambolle, Pock]

Up = ProxX, p« (Up_1 + 0K (2p_1))
Ty, = prox_qo(rn_1 — 7K (uy))

Zn = Tn +0(x, — xp_1)

For P(y,0), |y — gl* = iy
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-Computing Criterions

Unconstrained formulation

F(s) = min |25 — w|ac + in(w)

Prox

\4

Py =1 Pp

ARC difficult to compute (non-convex)

ARC(I) = max F(sign(D7x)) non-convex

xeG g

< wARC(I) = max F(s) NON-convex
sec{—1,1}7

< 0ARC(I) = |9Q]coso0 easy
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-More on Signal Models

Signal model : “Union of subspace”

O = U @k where @k:{gj\ding:k}

ke{l...P}

Sparsity | D*xglo is not a good parameter

D redundant Gaussian i.i.d matrix N x P
”D*ZEQHO <P—-—N=2z7=0

Good one : DOF(z) =dimG;



1) Synthesis results

Compressed sensing : ) < N

Recovery rate

|z]o = DOF(z)

Identifiability
F(sign(D*x)) < 1

ARC(I(D*z)) < 1

Credit to C. Dossal
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-Random Settings

2) Analysis results D, ® Gaussian i.i.d random matrices

Many dependancies between columns

— Strong unstability

Close to ¢ ball !
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D*=V,®=1d

O : piecewise constant signals with k& — 1 step.

A

“Box” “Staircase”

I
+1§ T+1 o
F(s)=1—¢ F(s) =1

No noise stability
even tor small one
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-Fused Lasso

Oprr

eld

1
argmin = |y — B2
rERN

Vz|i < s1
r|1 < 82

subject to {

Signal Model: Characteristic functions sum

Os : g = ]-[a,b] T ]-[c,d]

Overlap

No overlap




& X FFused Lasso

1
Qpr | eld | argmin - |y — Px|; subject to {

xRN

Vz|i < s1
r|1 < 82

a,b]Ne,dl #0 = F(xg) > 1

no noise robustness



# X k- Fused Lasso

Oprr

eld

1
argmin =y — @z
rERN

a,b]N[c,d] =0 = 2 situations

subject to {

Vx”l < S1
zl1 < so



Fsed Lasso

1 . Vx| < s
0 a “ly — ®x|5 subject to < -
N I B el W ®xlzsub) Lzl < 82

a,b]N[c,d] =0 = 2 situations

e — b < &(e)

F(sign(D*xg)) > 1

no noise robustness
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. 1 . ( Vilf”l < S1
0 aremin —|ly — ®zl|2 subject to < =
DIF eld m%RN QHy HQ J \ 33”1 < So

a,b]N[c,d] =0 = 2 situations

e — 0] < &(¢) e —b| > &(¢)
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Fused Lasso

. 1 . ( Vilf”l < S1
0 aremin —|ly — ®zl|2 subject to < =
DIF eld m%RN QHy HQ J \ 33”1 < So

a,b]N[c,d] =0 = 2 situations

e —b] < £(e) e —b] > &(e)
F(sign(D*xg)) > 1 F(sign(D*zg)) = ARC(]) < 1
no noise robustness strong noise robustness

Haar : similar results



JTake-Away Messages




- Take-Away Messages

— Analysis regularization ¢s robust



X i Take-Away Messages

— Analysis regularization ¢s robust

— Geometry (union of subspaces) : key concept for recovery



- Take-Away Messages

— Analysis regularization ¢s robust

— Geometry (union of subspaces) : key concept for recovery

— Sparsity is not univoquely defined



Overview

e Analysis vs. Synthesis Regularization

e Local Parameterization of Analysis Regularization

e Identifiability and Stability

« Numerical Evaluation

e Perspectives
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4 . What’s Next ?

— Support identifiability with Gaussian, Poisson noise

Deterministic theorem — treat the noise as a random variable

— Total Variation identifiability

Existence of a better criterion to ensure noisy recovery 7

— Continuous model

Work initiated by Chambolle in TV

— Larger class of priors J

Block sparsity | - |».q

— Real-world recovery results

Almost equal support recovery



iThanks

Joint work with

— Gabriel Peyré (CEREMADE, Dauphine)
— Charles Dossal (IMB, Bordeaux I)
— Jalal Fadili (GREYC, ENSICAEN)

Any questions 7
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x(y) = APy — AADrgs
s = sign(Drz(y))

B = A®* inverse of ® on G R & RE
B R Zy
Gr=1;=o(Gy)
—1 U BON of
B - Bz, = ((I)ng) 7
Bizy =0 B =UU*®*OU) 1 U*d*

Efficient computation  y = Bz = argmin |z — ®x|3
D*z=0

y\ [Pz (D" D
C’(M>—<O> where C_(D* O>



