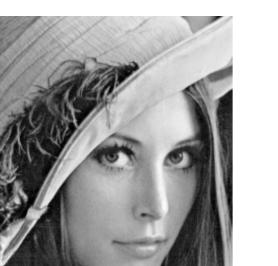
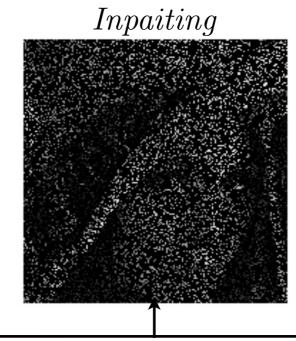
Robust Sparse Analysis Recovery

Samuel Vaiter

Inverse Problems

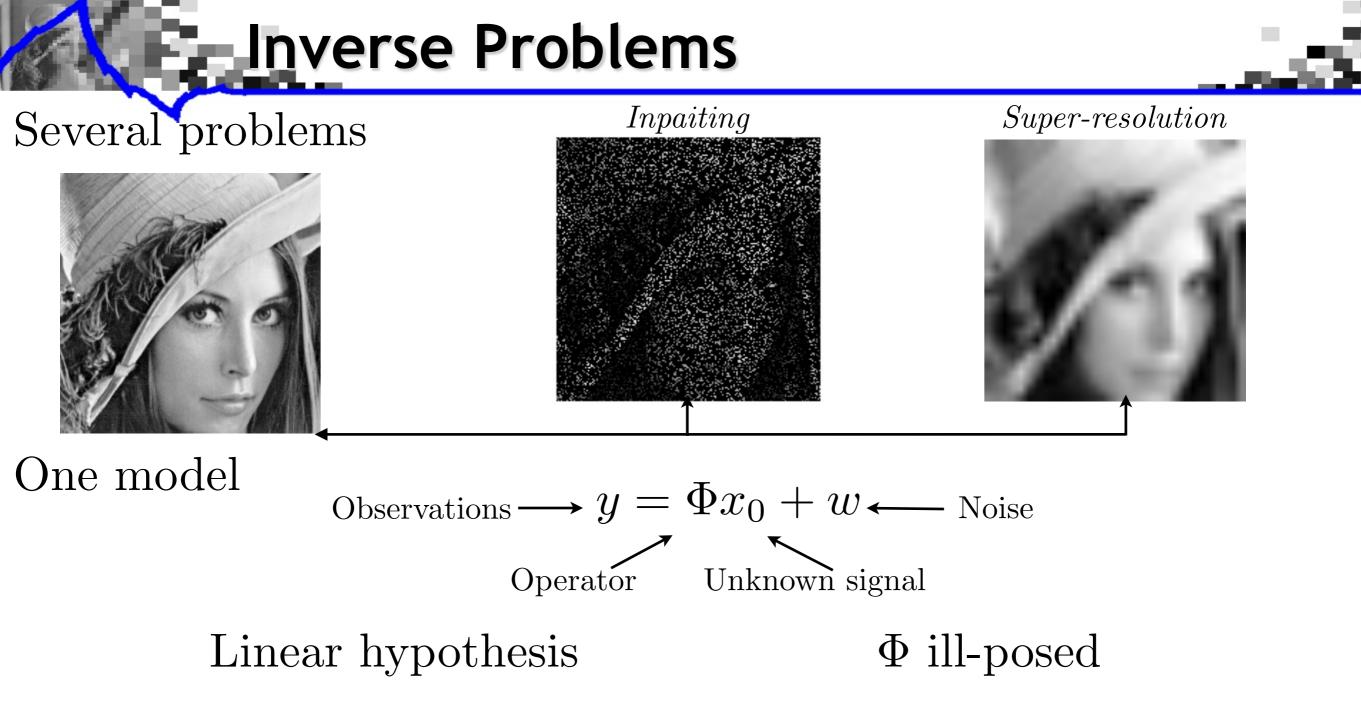
Several problems

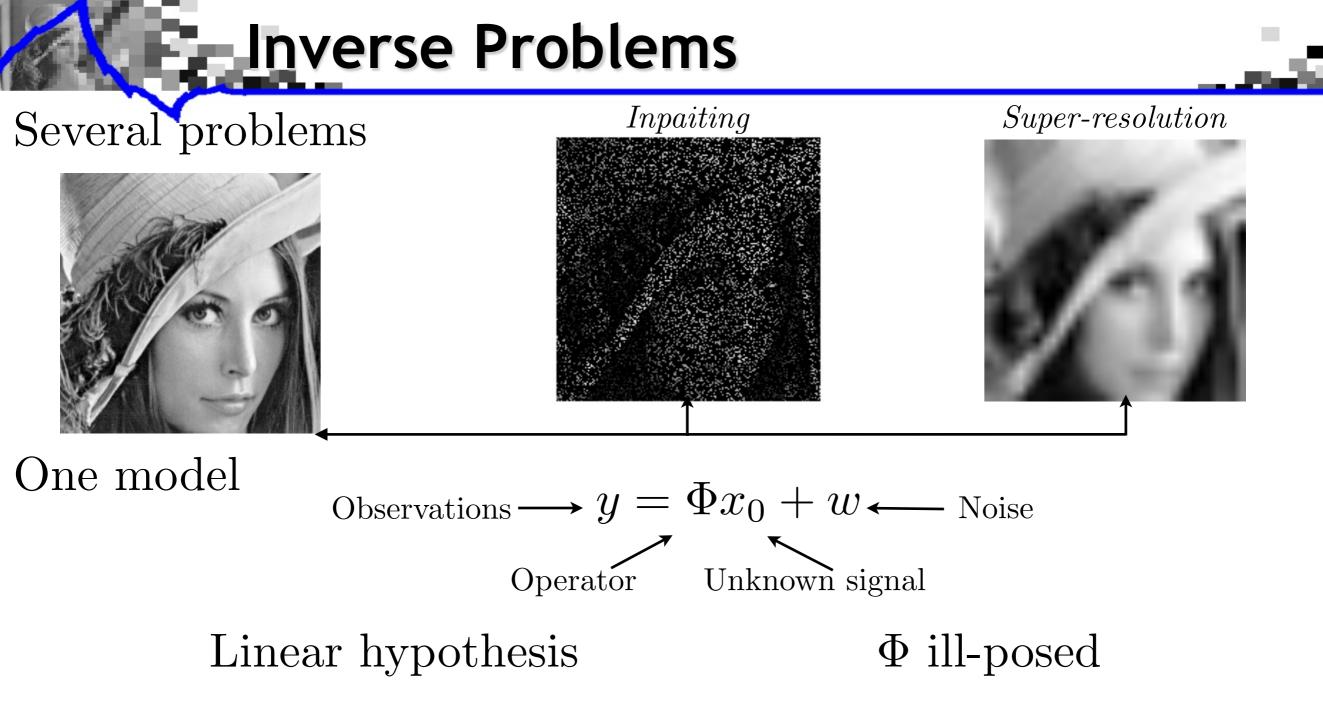




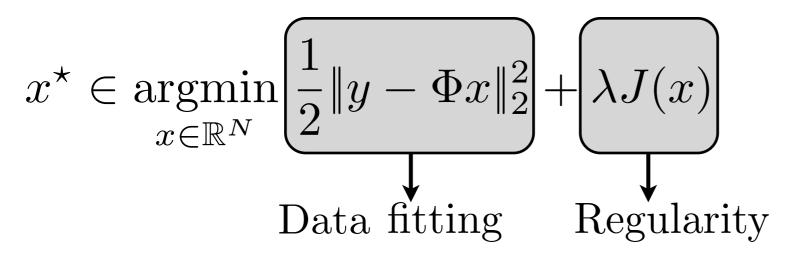
Super-resolution

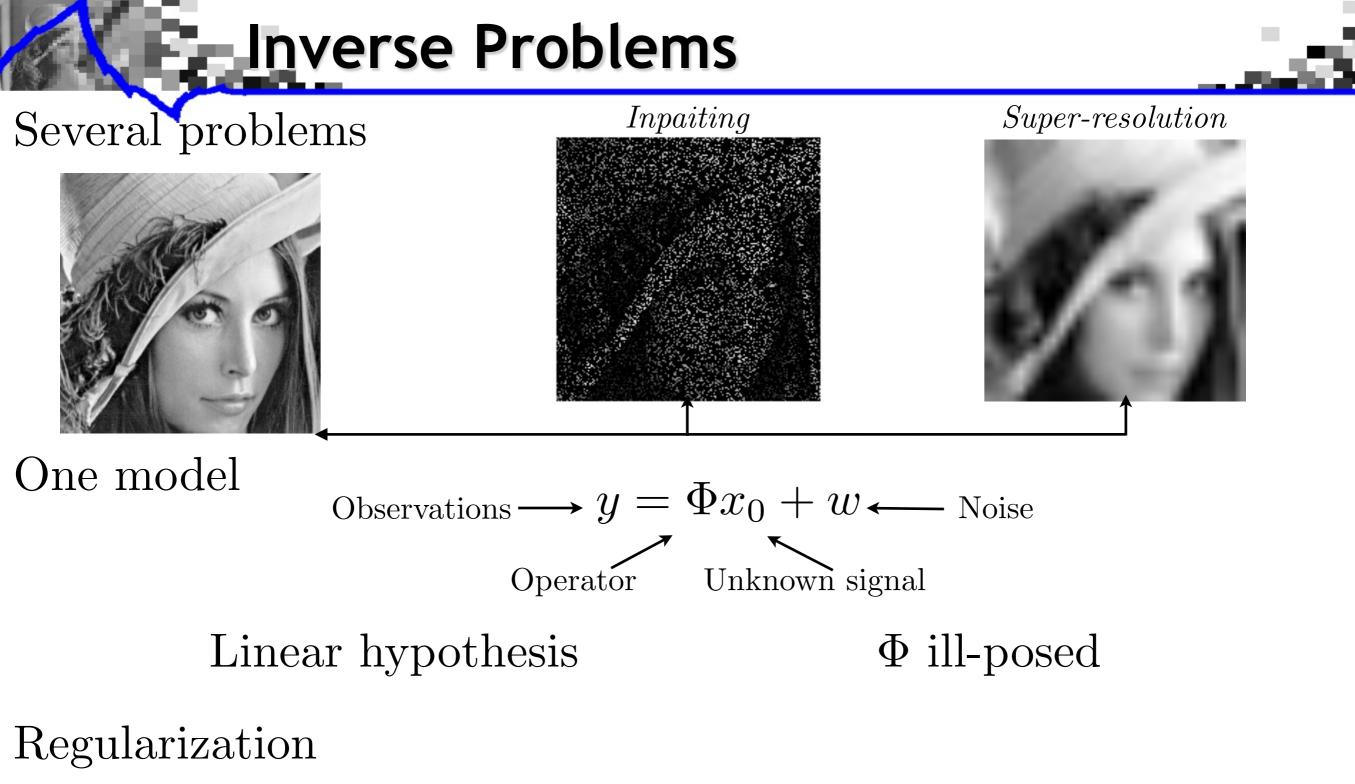






Regularization



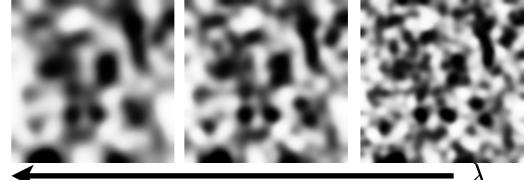


$$x^{\star} \in \underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} \underbrace{\left[\frac{1}{2} \|y - \Phi x\|_{2}^{2}}_{\operatorname{Data fitting}} + \underbrace{\left[\lambda J(x)\right]}_{\operatorname{Regularity}} \xrightarrow{\operatorname{Noiseless}}_{\lambda \to 0} x^{\star} \in \underset{\Phi x = y}{\operatorname{argmin}} J(x)$$

فتعشر

Sobolev

 $J(x) = \frac{1}{2} \int \|\nabla x\|^2$

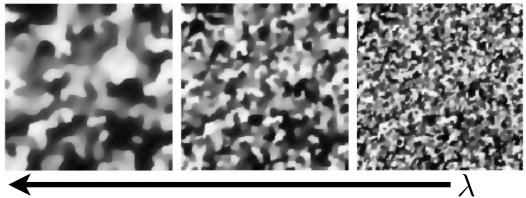


Sobolev

$$J(x) = \frac{1}{2} \int \|\nabla x\|^2$$

Total variation

$$J(x) = \int \|\nabla x\|$$



Sobolev

$$J(x) = \frac{1}{2} \int \|\nabla x\|^2$$

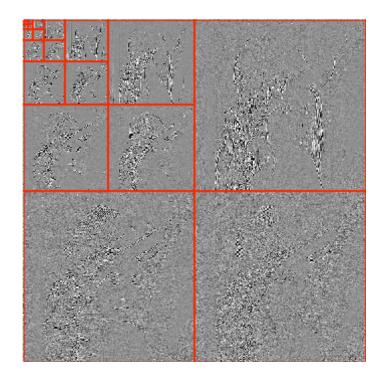
Total variation

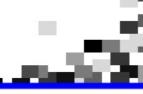
$$J(x) = \int \|\nabla x\|$$

Wavelet sparsity

$$J(x) = |\{i \setminus \langle x, \psi_i \rangle \neq 0\}$$

(ideal prior)





• Analysis vs. Synthesis Regularization

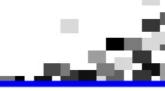
Local Parameterization of Analysis Regularization

Identifiability and Stability

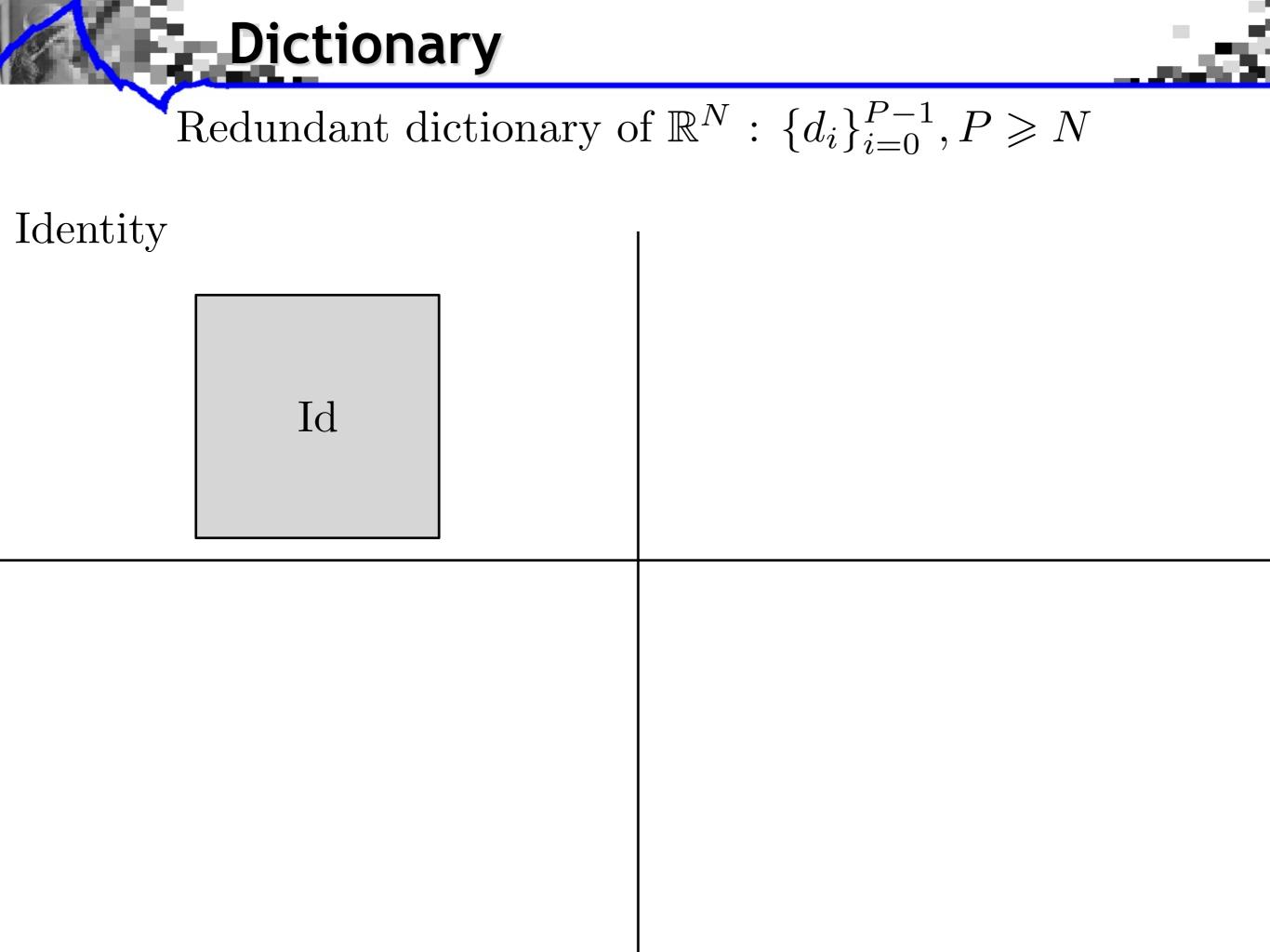
Numerical Evaluation

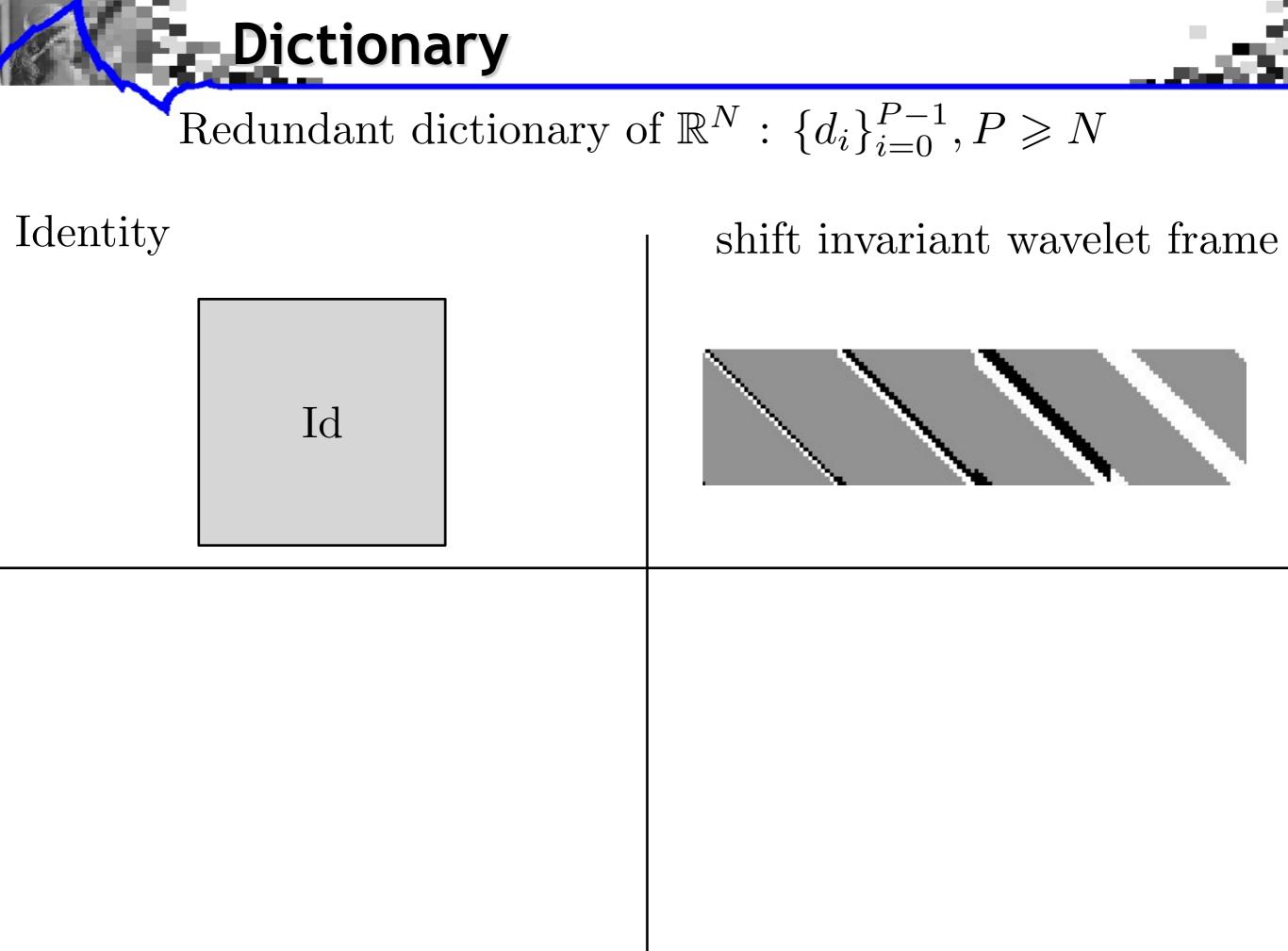
Perspectives

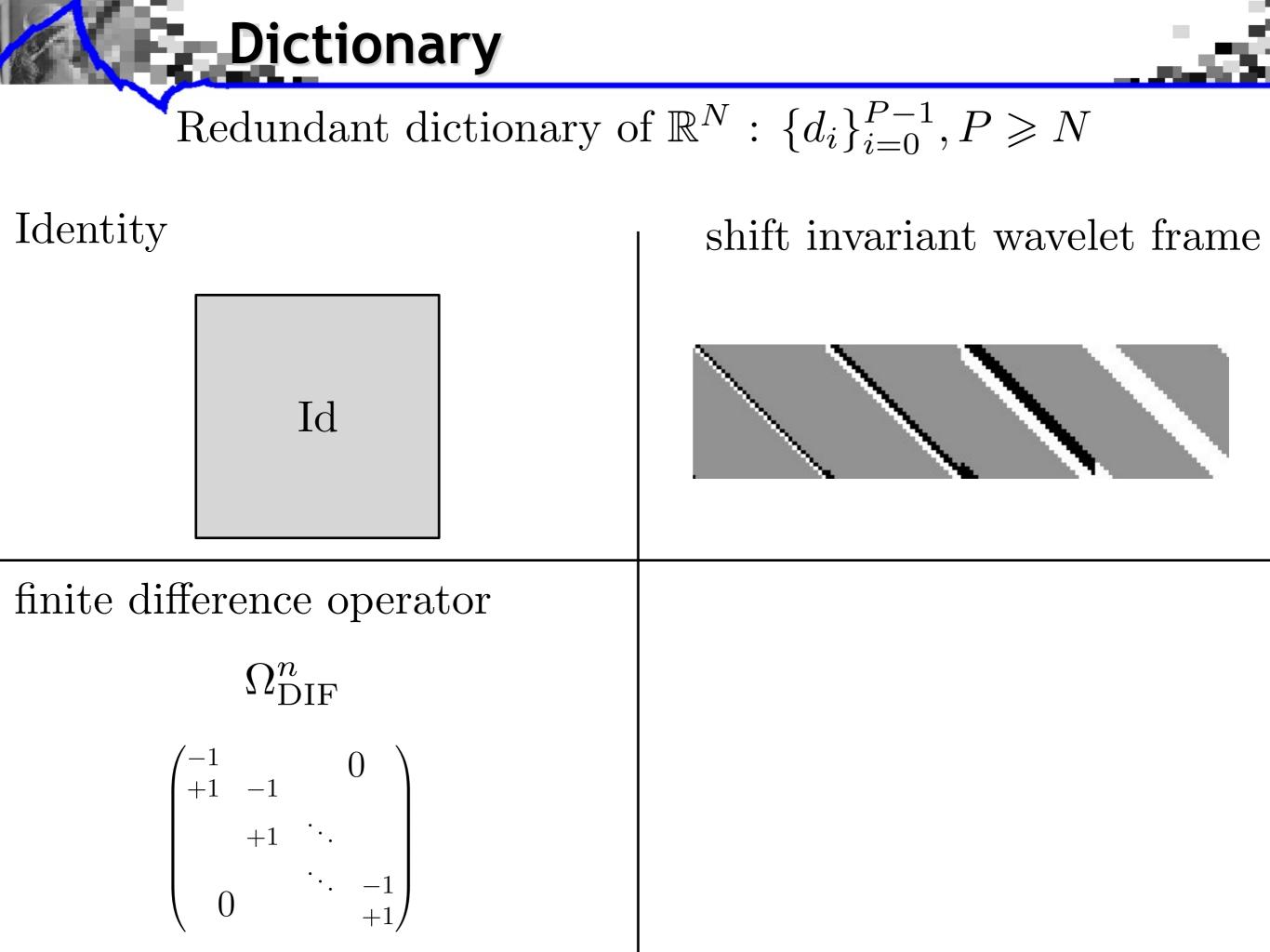
Dictionary

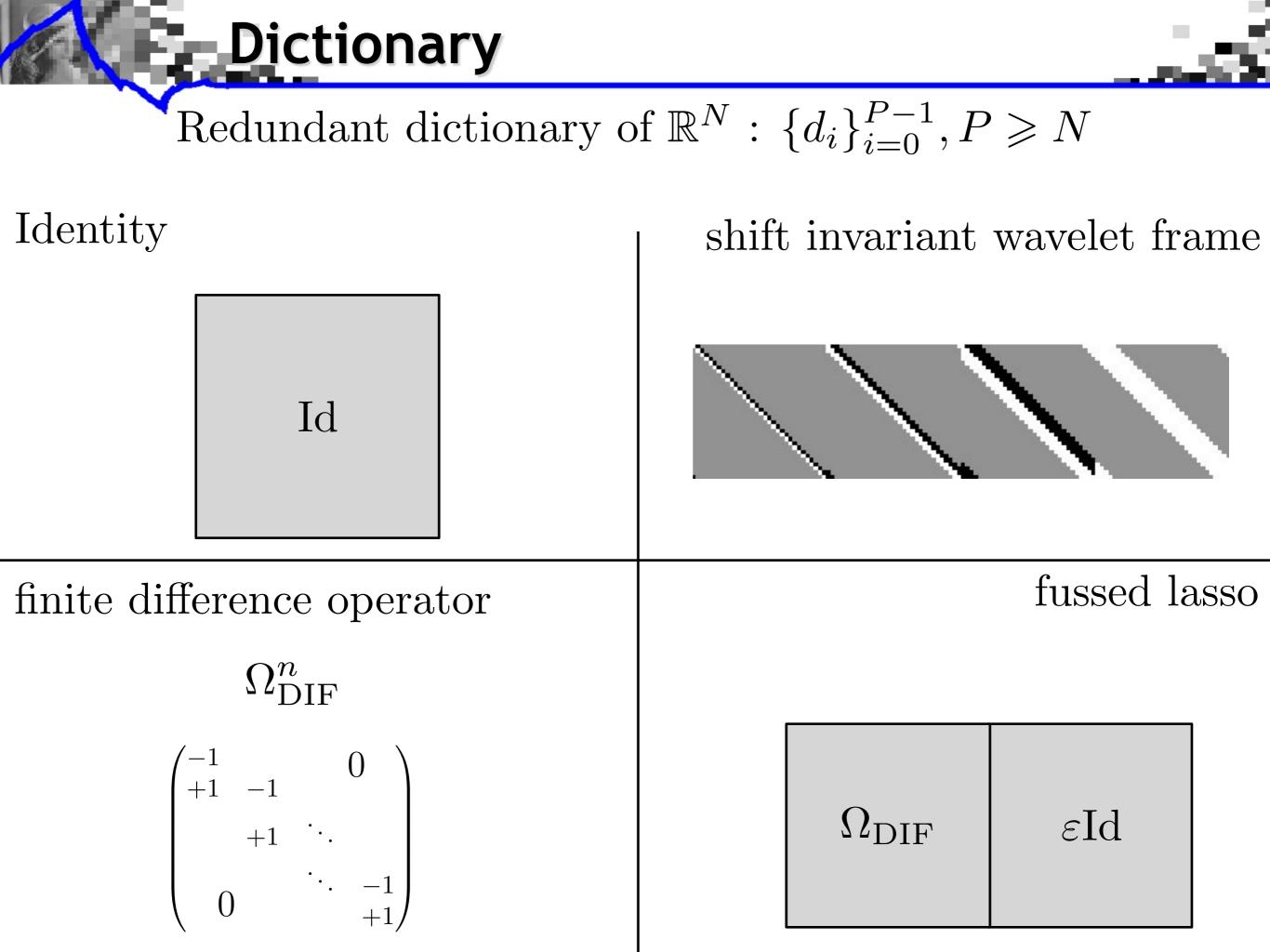


Redundant dictionary of \mathbb{R}^N : $\{d_i\}_{i=0}^{P-1}, P \ge N$





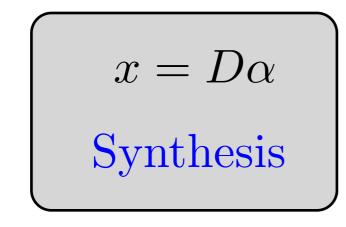




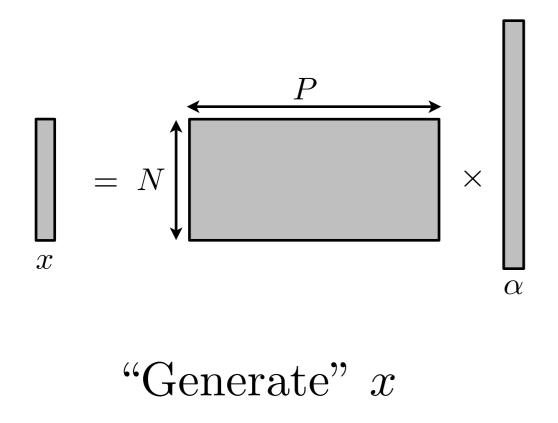
Two point of view

Analysis versus Synthesis

Two point of view

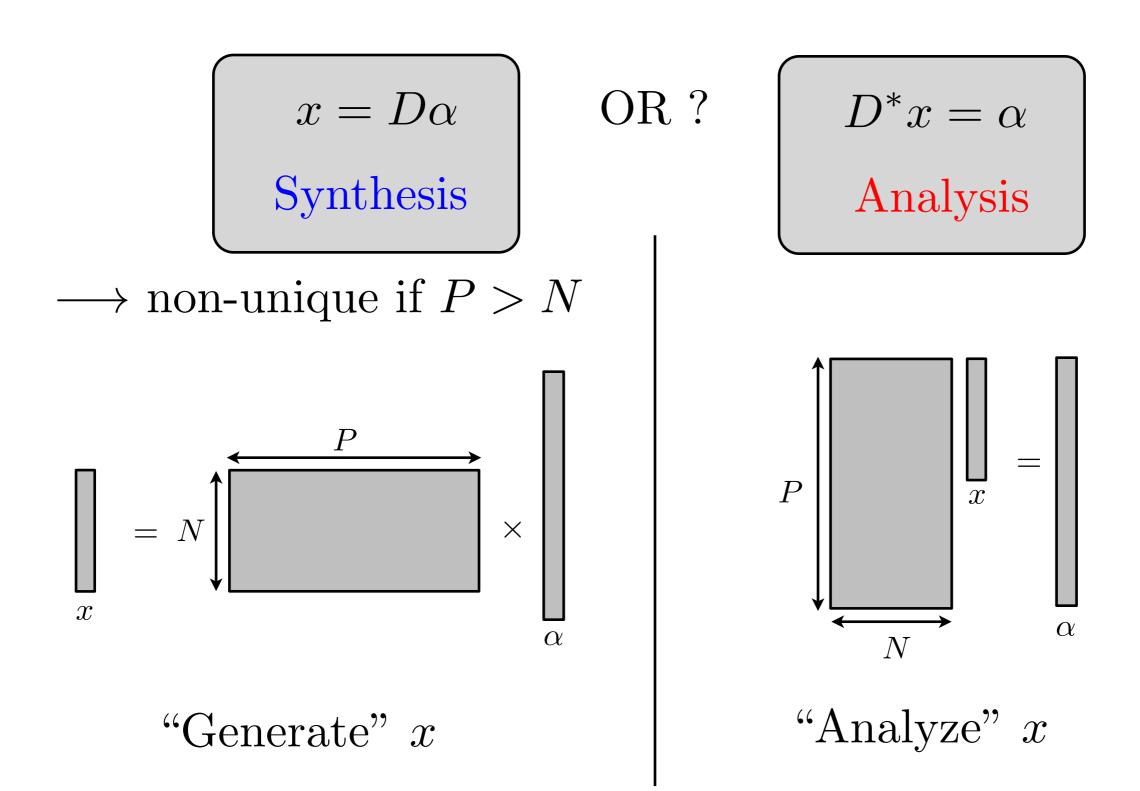


 \longrightarrow non-unique if P > N



Analysis versus Synthesis

Two point of view



"Ideal" sparsity prior:

 $J_0(\alpha) = |\{i \setminus \alpha_i \neq 0\}|$

"Ideal" sparsity prior: $J_0(\alpha) = |\{i \setminus \alpha_i \neq 0\}|$

 ℓ^0 minimization is NP-hard

"Ideal" sparsity prior: $J_0(\alpha) = |\{i \setminus \alpha_i \neq 0\}|$

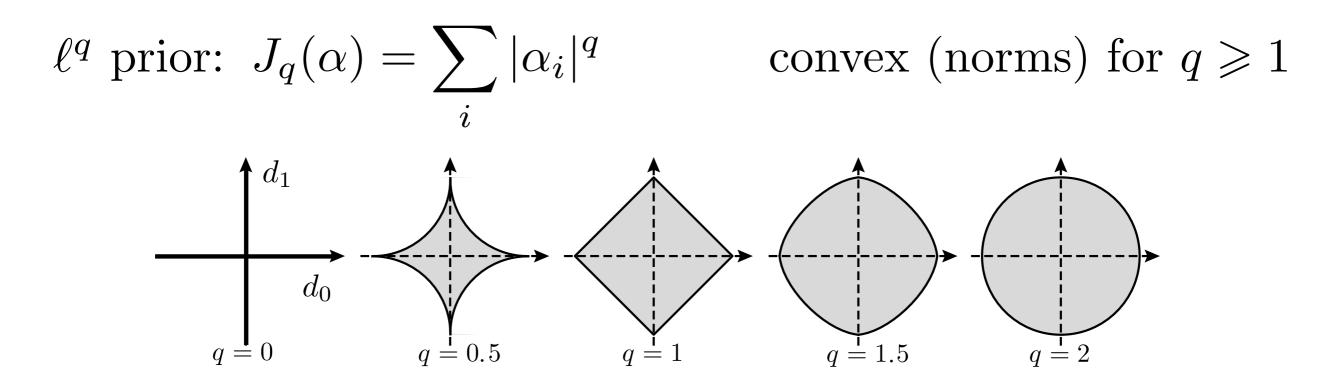
 ℓ^0 minimization is NP-hard

$$\ell^q$$
 prior: $J_q(\alpha) = \sum_i |\alpha_i|^q$

convex (norms) for $q \ge 1$

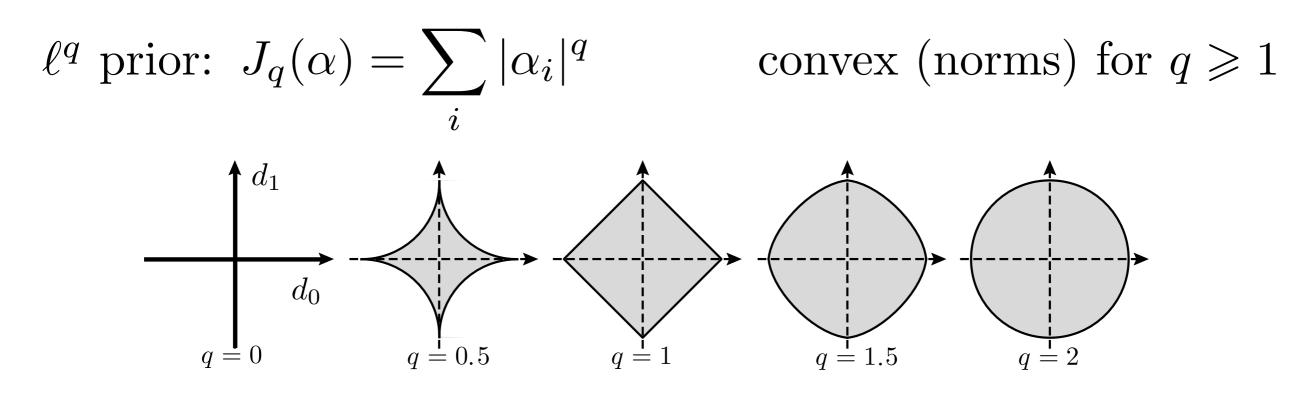
"Ideal" sparsity prior: $J_0(\alpha) = |\{i \setminus \alpha_i \neq 0\}|$

 ℓ^0 minimization is NP-hard



"Ideal" sparsity prior: $J_0(\alpha) = |\{i \setminus \alpha_i \neq 0\}|$

 ℓ^0 minimization is NP-hard

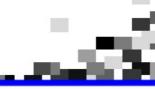


 ℓ^1 norm: *convexification* of ℓ^0 prior

Synthesis

$$\underset{\alpha \in \mathbb{R}^Q}{\operatorname{argmin}} \ \frac{1}{2} \| y - \Psi \alpha \|_2^2 + \lambda \| \alpha \|_1$$

$$\Psi = \Phi D \qquad x = D\alpha$$



Synthesis

$$\underset{\alpha \in \mathbb{R}^Q}{\operatorname{argmin}} \ \frac{1}{2} \| y - \Psi \alpha \|_2^2 + \lambda \| \alpha \|_1$$

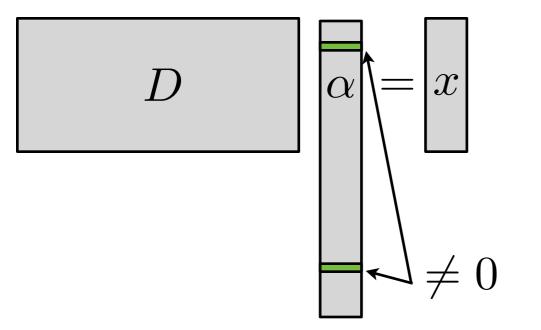
$$\Psi = \Phi D \qquad x = D\alpha$$

$$\begin{array}{l} \text{Analysis} \\ \operatorname*{argmin}_{x \in \mathbb{R}^N} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda \| D^* x \|_1 \end{array}$$

Synthesis

$$\underset{\alpha \in \mathbb{R}^Q}{\operatorname{argmin}} \ \frac{1}{2} \| y - \Psi \alpha \|_2^2 + \lambda \| \alpha \|_1$$

$$\Psi = \Phi D \qquad x = D\alpha$$



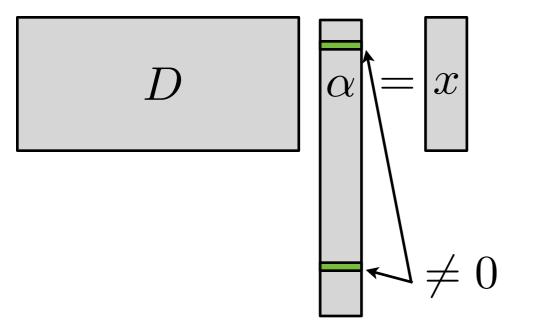
$$\begin{array}{l} \text{Analysis} \\ \operatorname*{argmin}_{x \in \mathbb{R}^N} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda \| D^* x \|_1 \end{array}$$



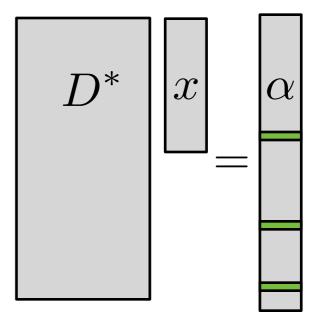
Synthesis)

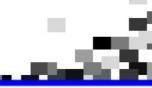
$$\underset{\alpha \in \mathbb{R}^Q}{\operatorname{argmin}} \ \frac{1}{2} \| y - \Psi \alpha \|_2^2 + \lambda \| \alpha \|_1$$

$$\Psi = \Phi D \qquad x = D\alpha$$



$$\begin{array}{l} \text{Analysis} \\ \operatorname*{argmin}_{x \in \mathbb{R}^N} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda \|D^* x\|_1 \end{array}$$

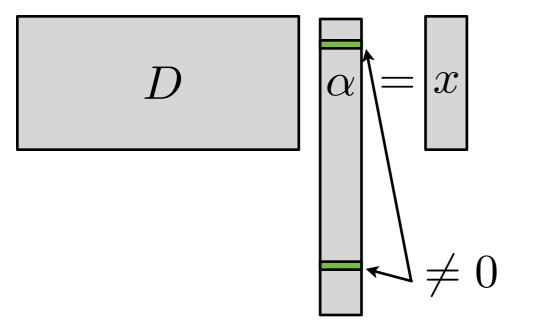




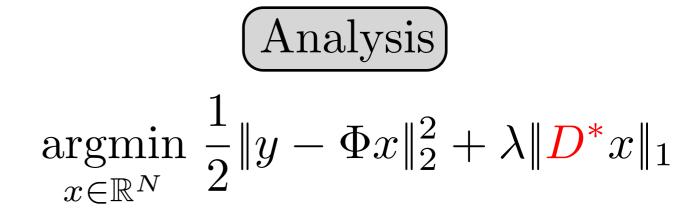
Synthesis)

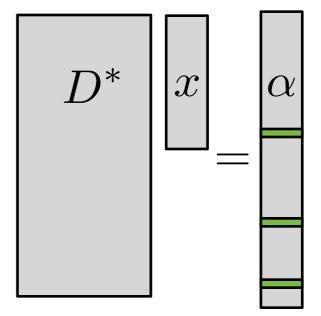
$$\underset{\alpha \in \mathbb{R}^Q}{\operatorname{argmin}} \ \frac{1}{2} \| y - \Psi \alpha \|_2^2 + \lambda \| \alpha \|_1$$

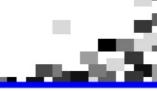
$$\Psi = \Phi D \qquad x = D\alpha$$



Sparse approx. of x^* in D



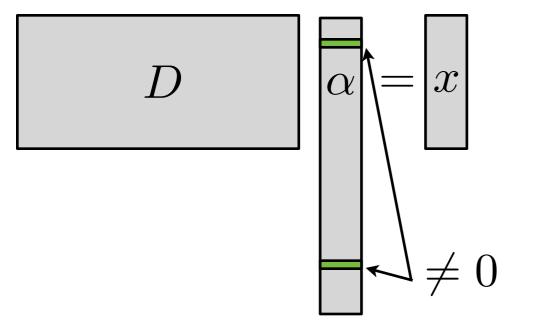




(Synthesis)

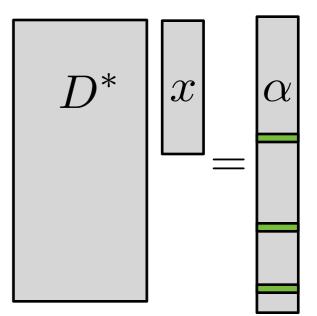
$$\underset{\alpha \in \mathbb{R}^Q}{\operatorname{argmin}} \ \frac{1}{2} \| y - \Psi \alpha \|_2^2 + \lambda \| \alpha \|_1$$

$$\Psi = \Phi D \qquad x = D\alpha$$



Analysis
argmin
$$\frac{1}{2} \|y - \Phi x\|_2^2 + \lambda \|D^* x\|_1$$

 $x \in \mathbb{R}^N$



Correlation of x^* and D sparse

Sparse approx. of x^* in D

$$x^{\star} \in \underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi x\|_{2}^{2} + \lambda \|D^{*}x\|_{1} \qquad \mathcal{P}(y,\lambda)$$
$$I = \operatorname{supp}(D^{*}x^{\star}), J = I^{c}$$

$$x^{\star} \in \underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi x\|_{2}^{2} + \lambda \|D^{*}x\|_{1} \qquad \mathcal{P}(y,\lambda)$$
$$I = \operatorname{supp}(D^{*}x^{\star}), J = I^{c}$$

$$\operatorname{Ker} D_J^* = \mathcal{G}_J$$

$$x^{\star} \in \underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi x\|_{2}^{2} + \lambda \|D^{*}x\|_{1} \qquad \mathcal{P}(y,\lambda)$$
$$I = \operatorname{supp}(D^{*}x^{\star}), J = I^{c}$$

Definition

$$\operatorname{Ker} D_J^* = \mathcal{G}_J$$

Signal model : "Union of subspace"

 $\Theta = \bigcup_{k \in \{1...P\}} \Theta_k \quad \text{where} \quad \Theta_k = \{\mathcal{G}_J \setminus \dim \mathcal{G}_J = k\}$

$$x^\star \in \mathcal{G}_J$$

$$x^{\star} \in \underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi x\|_{2}^{2} + \lambda \|D^{*}x\|_{1} \qquad \mathcal{P}(y,\lambda)$$
$$I = \operatorname{supp}(D^{*}x^{\star}), J = I^{c}$$

Definition

$$\operatorname{Ker} D_J^* = \mathcal{G}_J$$

Signal model : "Union of subspace"

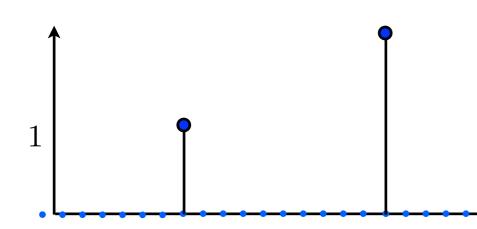
 $\Theta = \bigcup_{k \in \{1...P\}} \Theta_k \quad \text{where} \quad \Theta_k = \{\mathcal{G}_J \setminus \dim \mathcal{G}_J = k\}$

$$x^\star \in \mathcal{G}_J$$

Hypothesis: Ker $\Phi \cap \text{Ker } D^* = \{0\}$

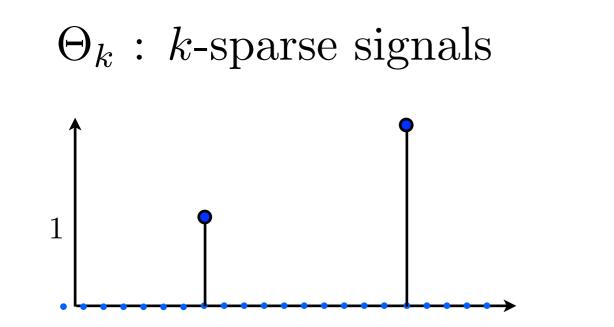
Examples of Signal Model

Identity

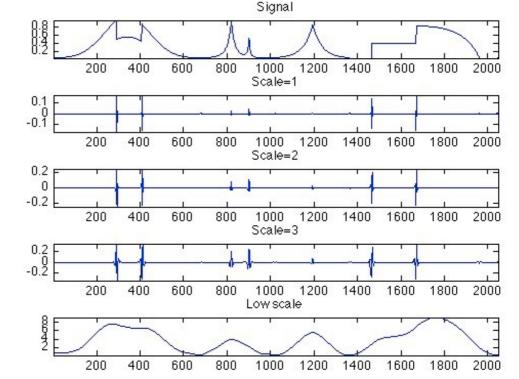


Examples of Signal Model

Identity



shift invariant wavelet frame

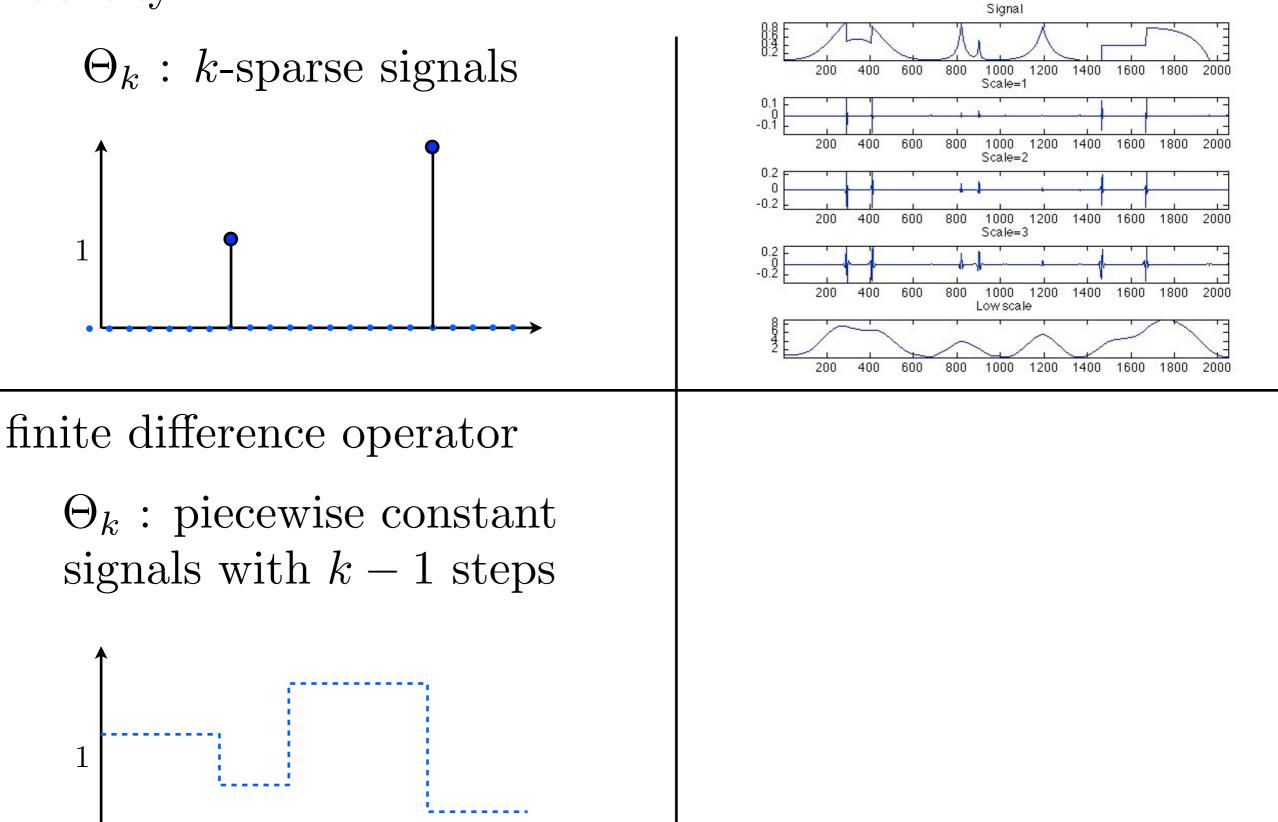


Examples of Signal Model

 a_1

 $\overline{a_2}$

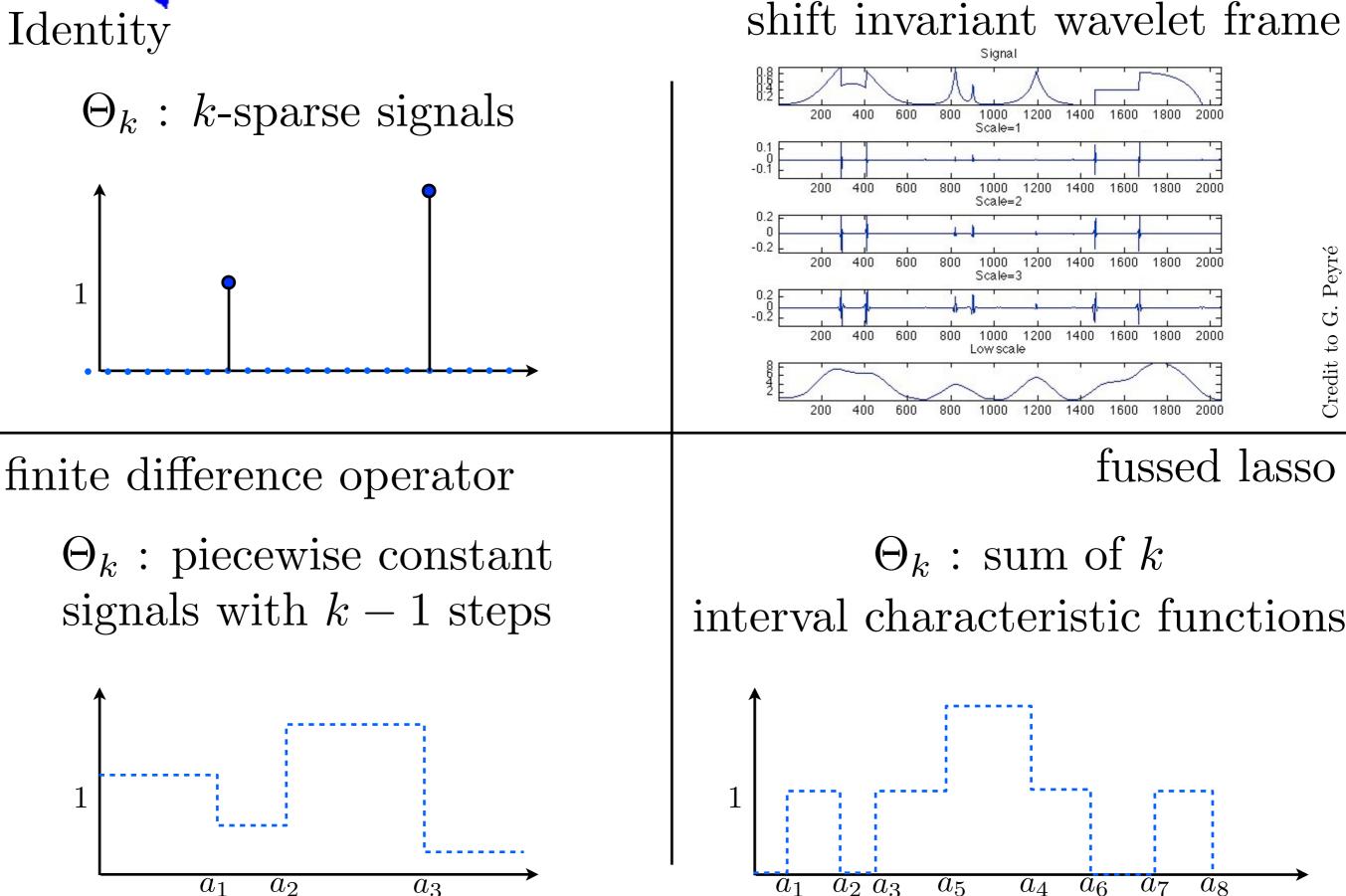
 a_3

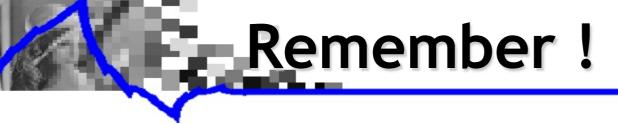


shift invariant wavelet frame

Credit to G. Peyré

Examples of Signal Model





Synthesis

$$\alpha^{\star} = \underset{\alpha \in \mathbb{R}^Q}{\operatorname{argmin}} \ \frac{1}{2} \| y - \Psi \alpha \|_2^2 + \lambda \| \alpha \|_1$$

Analysis

Local behavior ?

Properties of x^* solution of $\mathcal{P}(y,\lambda)$ as a function of y

Local behavior ?

Properties of x^* solution of $\mathcal{P}(y,\lambda)$ as a function of y

Noiseless identifiability ?

Is x_0 the unique solution of $\mathcal{P}(\Phi x_0, 0)$?

Local behavior ?

Properties of x^* solution of $\mathcal{P}(y,\lambda)$ as a function of y

Noiseless identifiability ?

Is x_0 the unique solution of $\mathcal{P}(\Phi x_0, 0)$?

Noise robustness ?

What can we say about $||x^* - x_0||$ for noisy observations ?

— Previous works in synthesis

[Fuchs, Tropp, Dossal]: address these questions

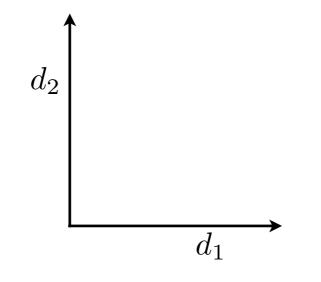
— Previous works in synthesis

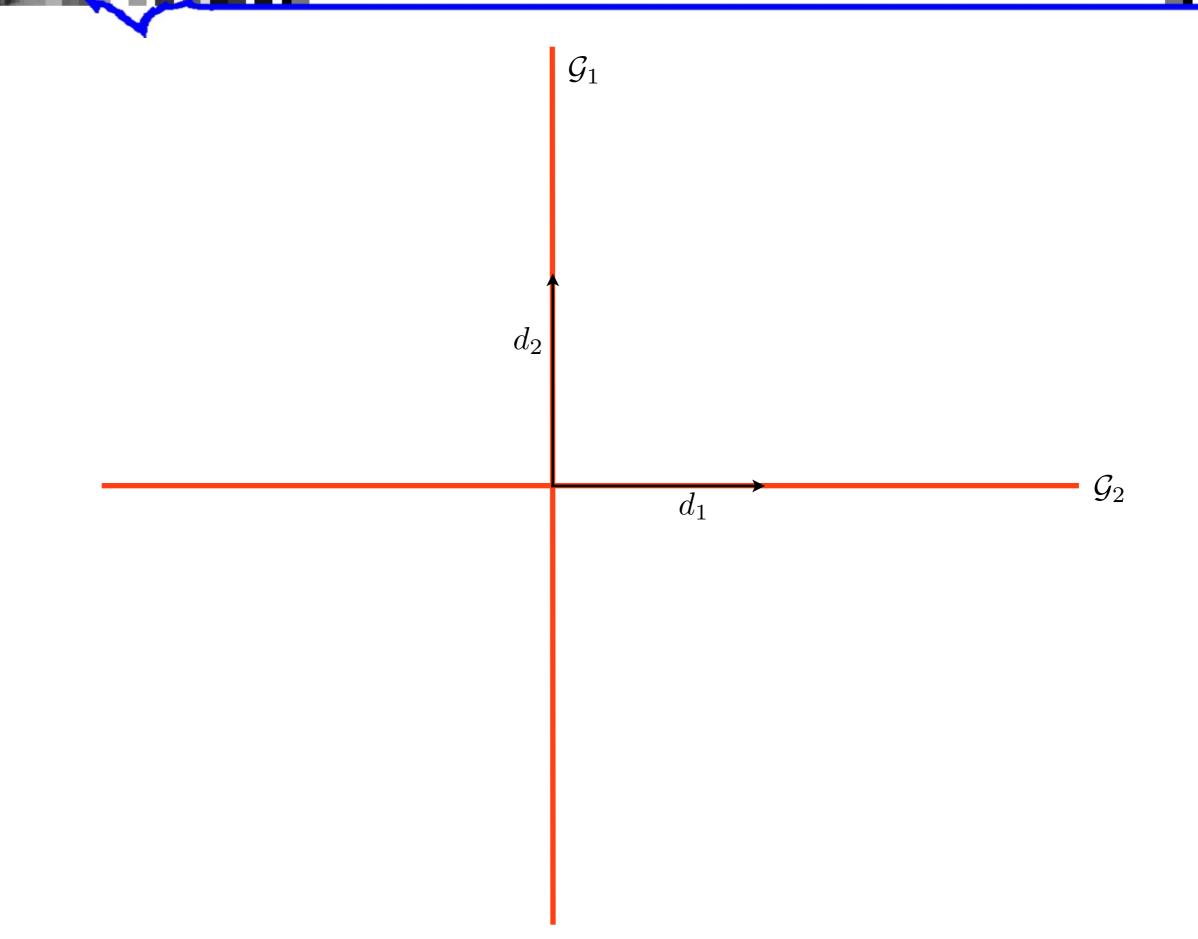
[Fuchs, Tropp, Dossal]: address these questions

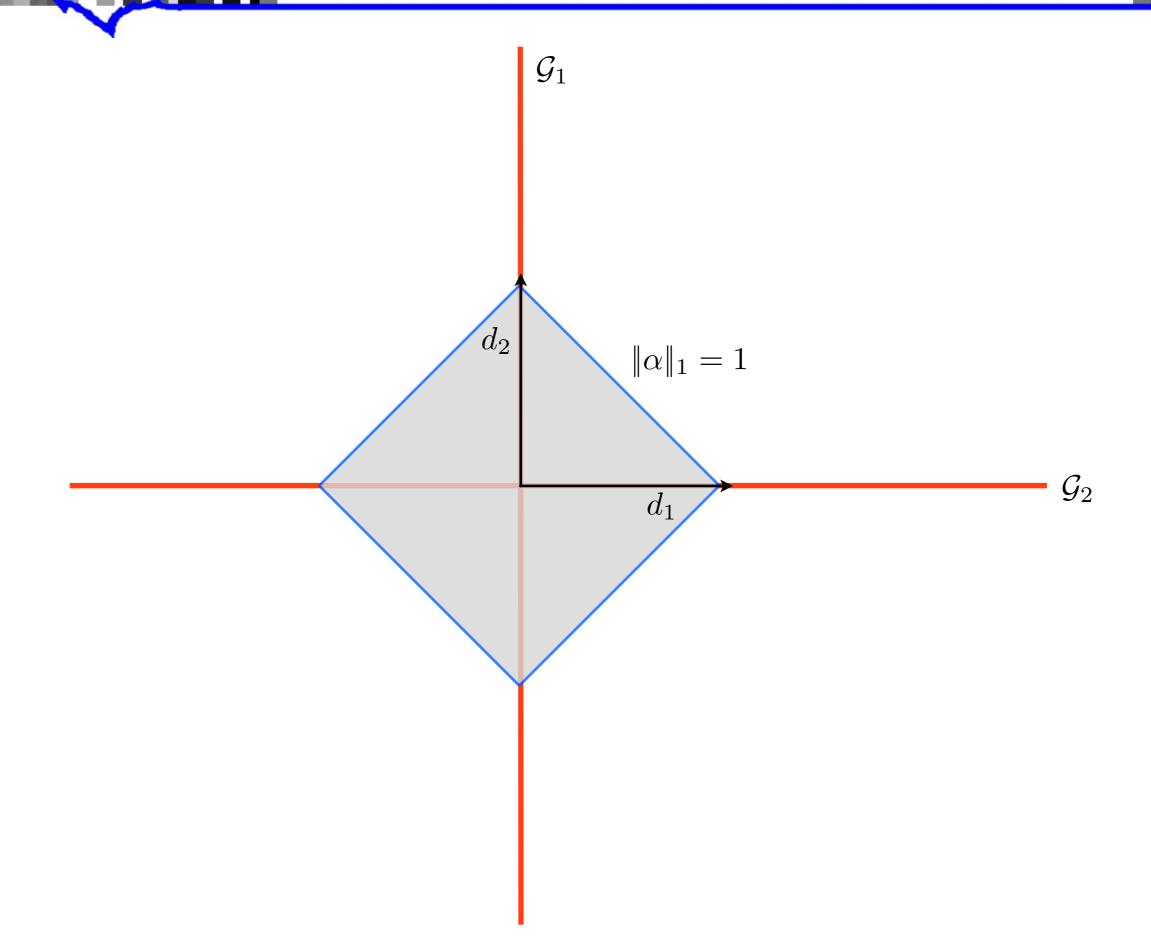
From Synthesis to Analysis Results

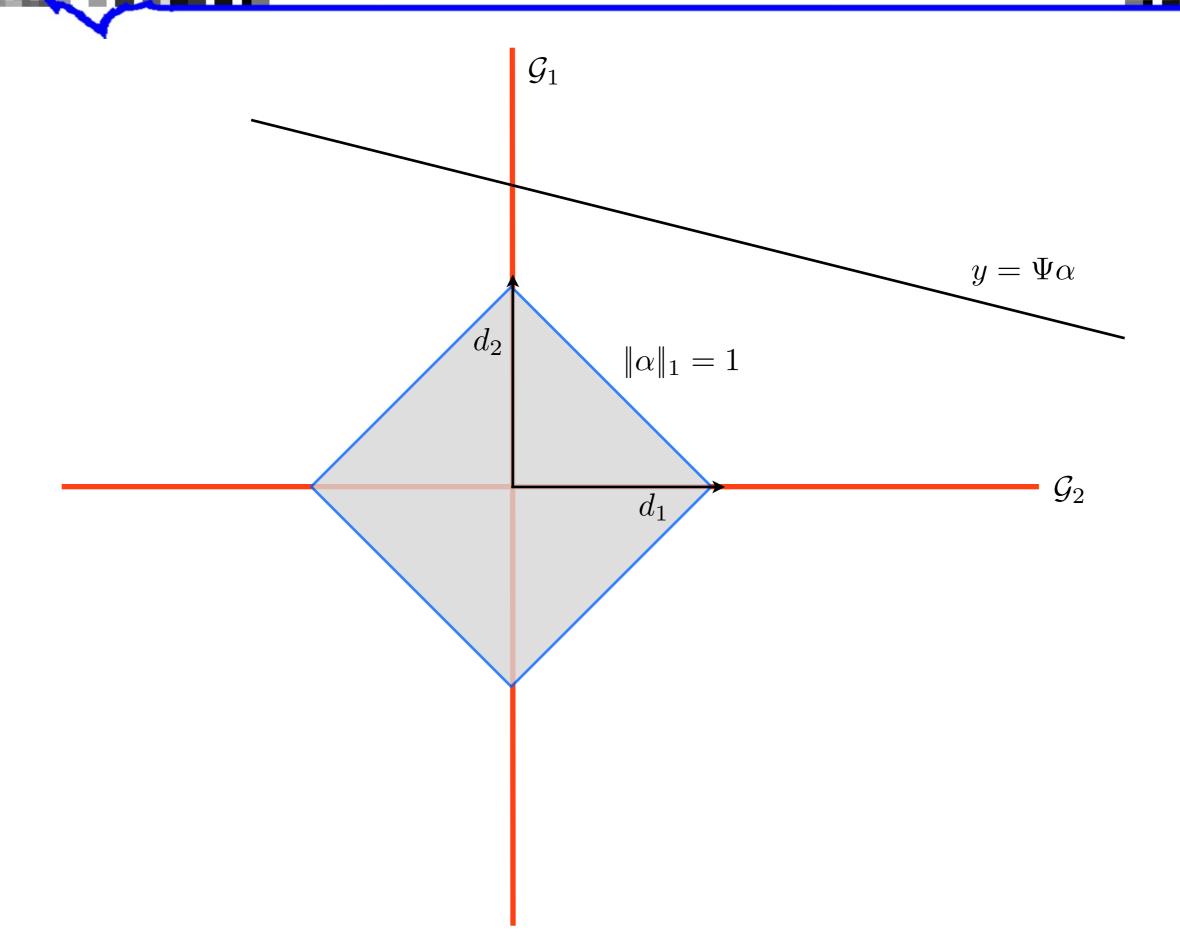
— Similar problem but much more difficulties in analysis

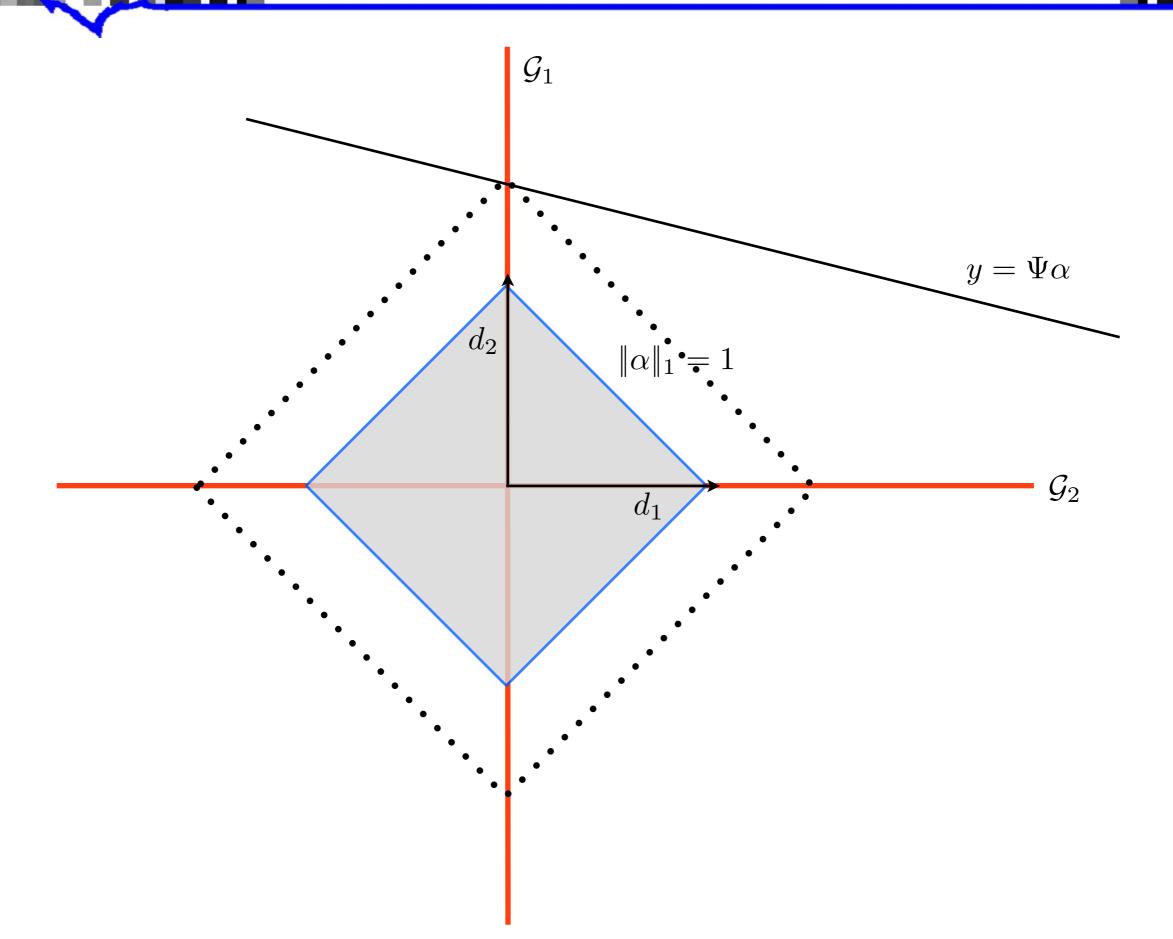
Geometry of the problem ?

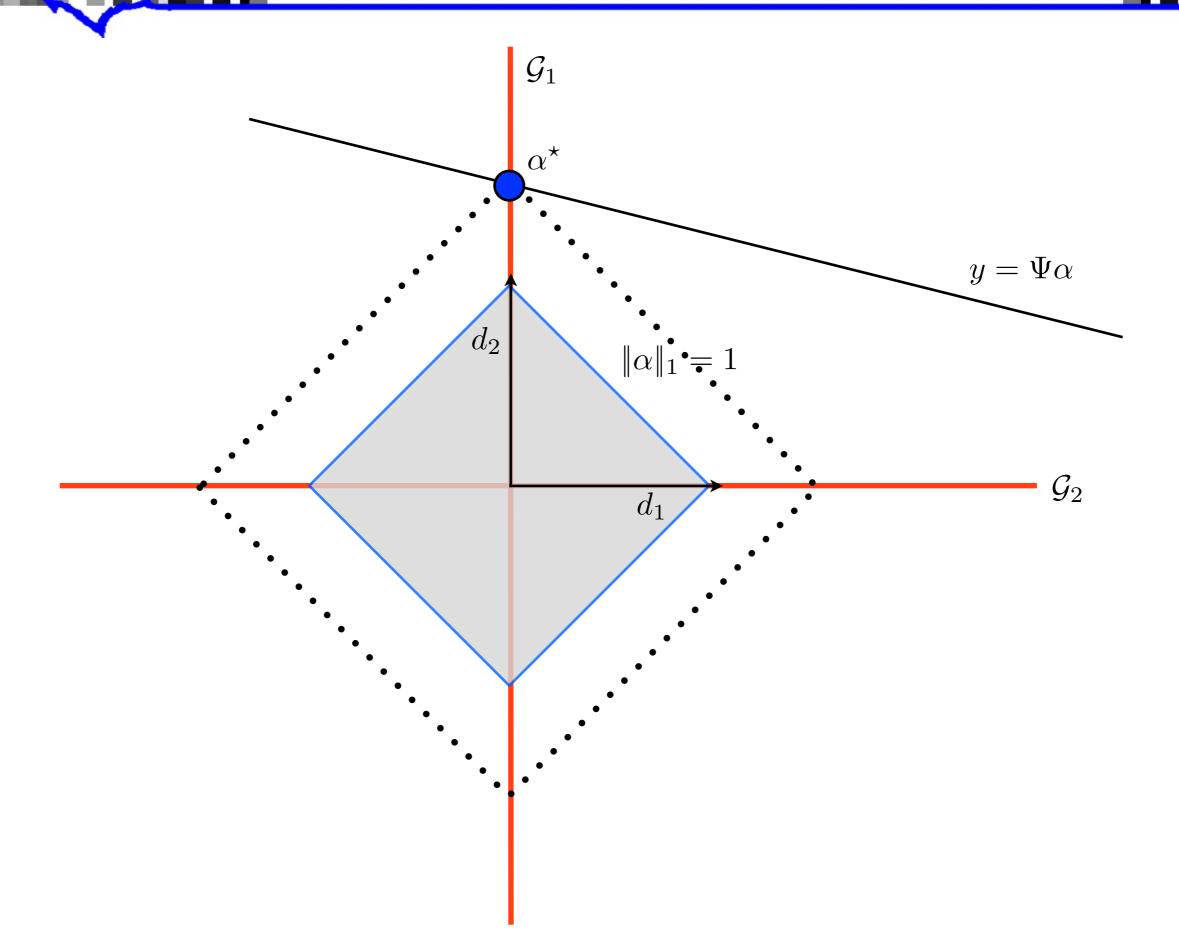


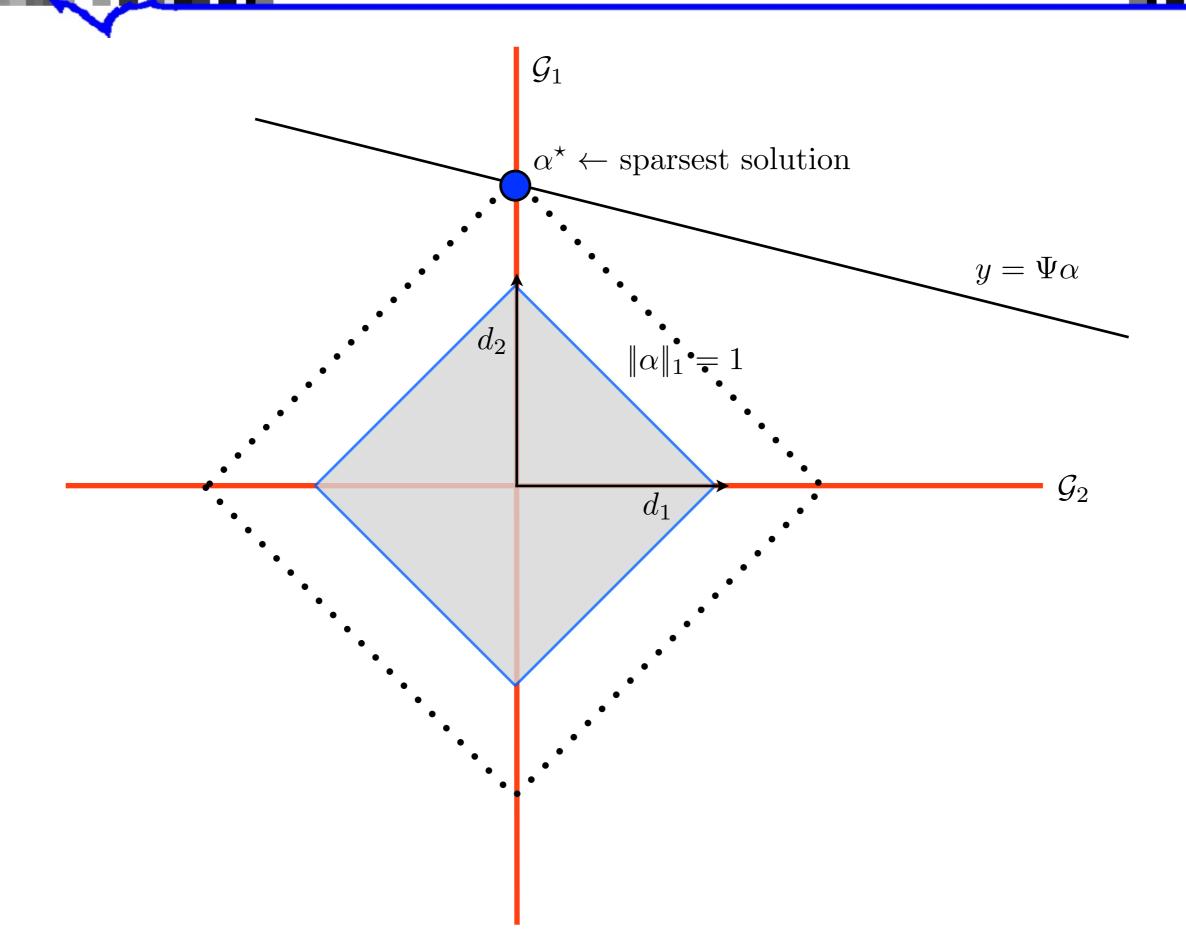


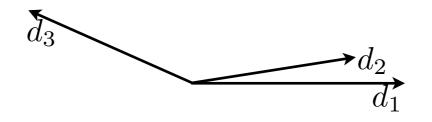


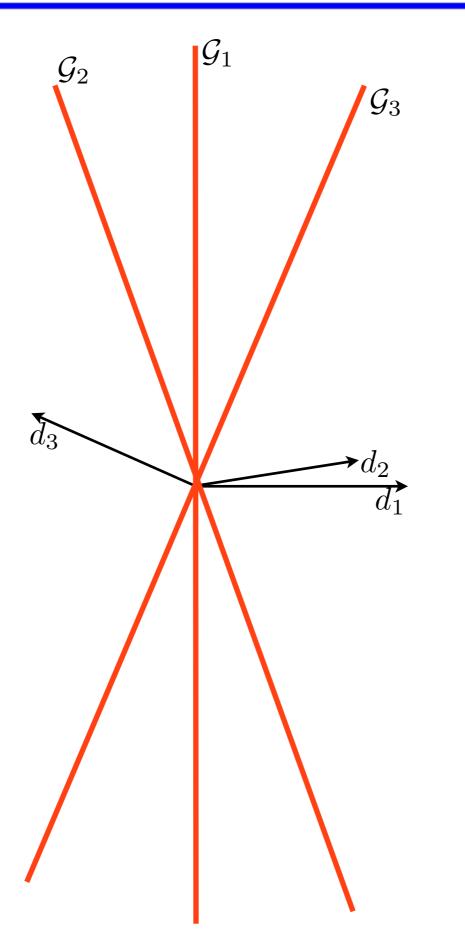


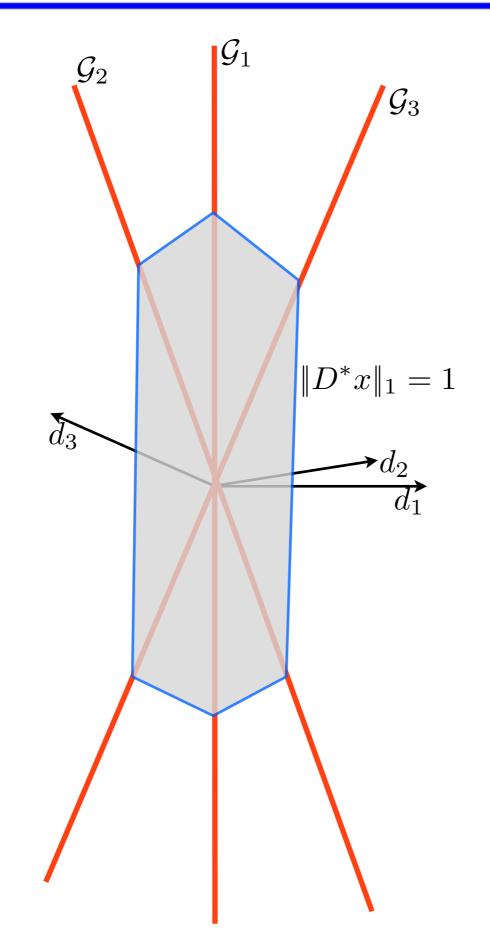


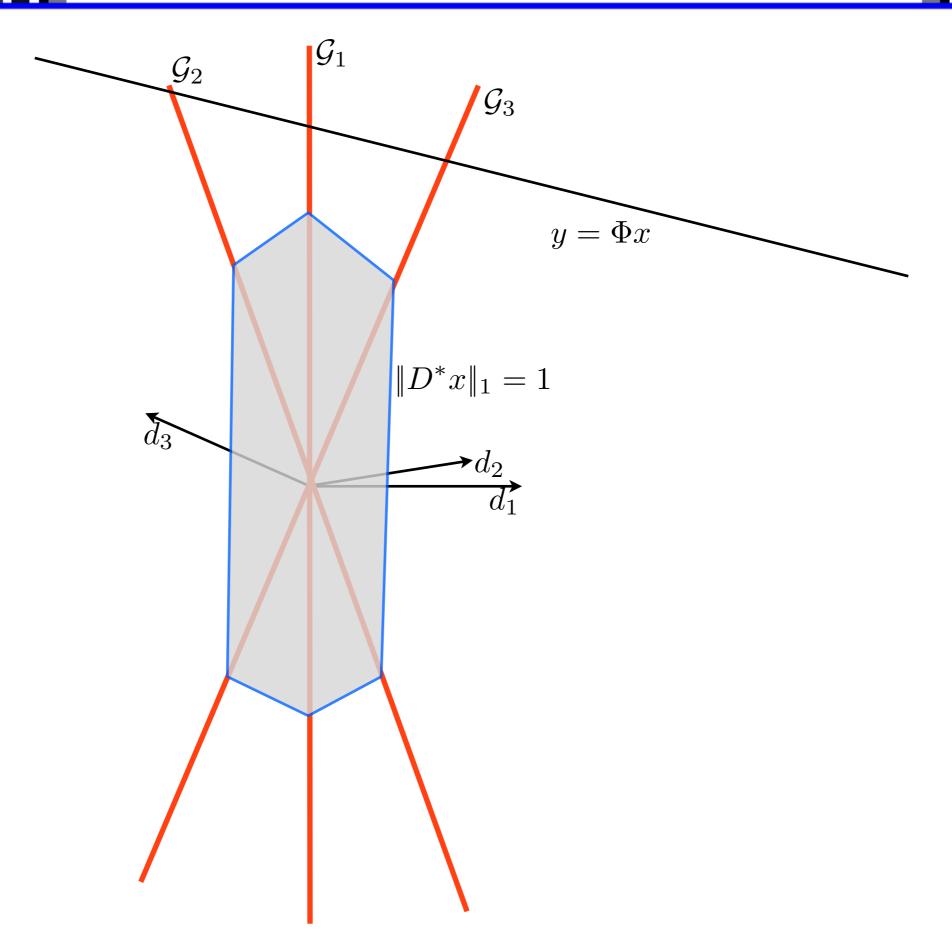


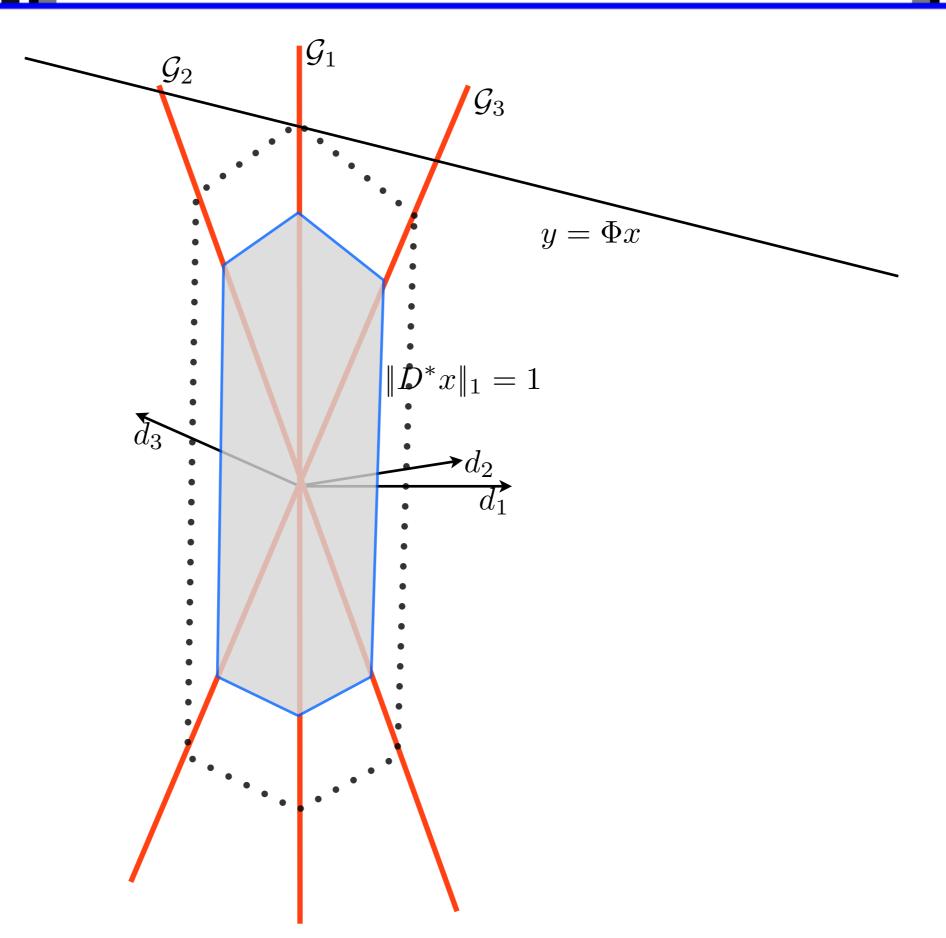


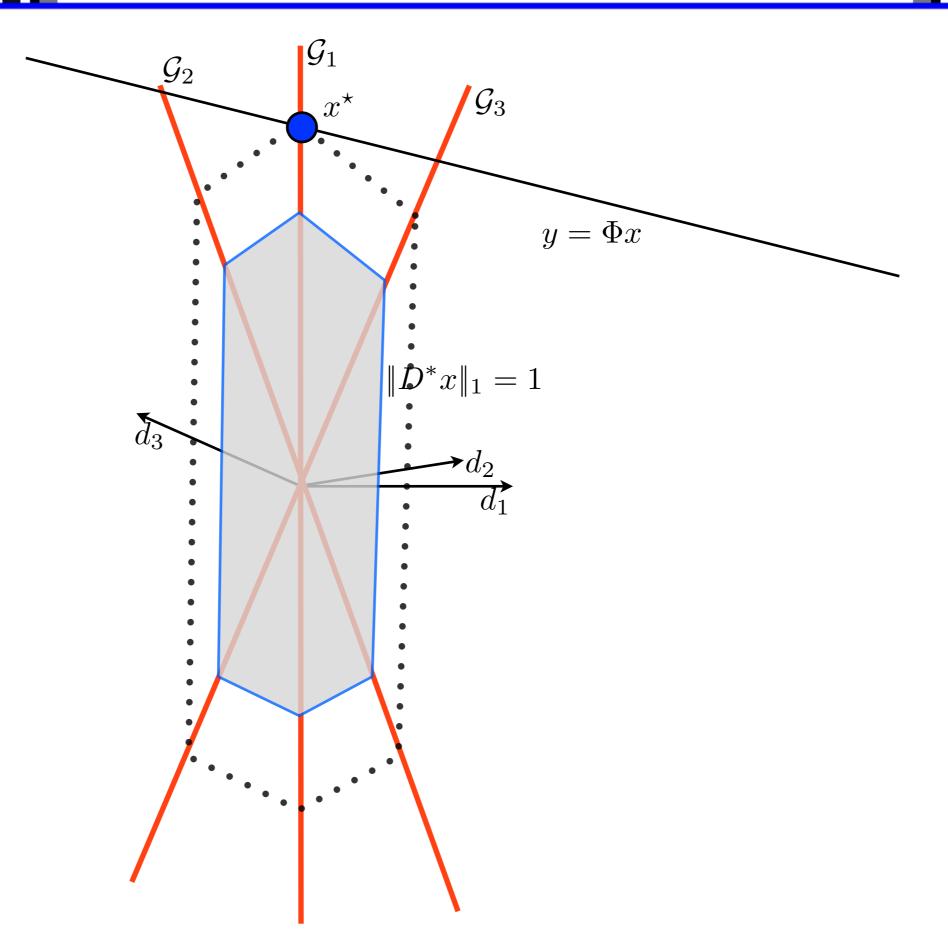














• Analysis vs. Synthesis Regularization

Local Parameterization of Analysis Regularization

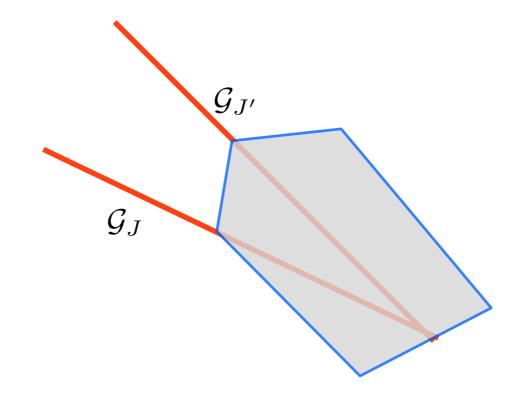
Identifiability and Stability

Numerical Evaluation

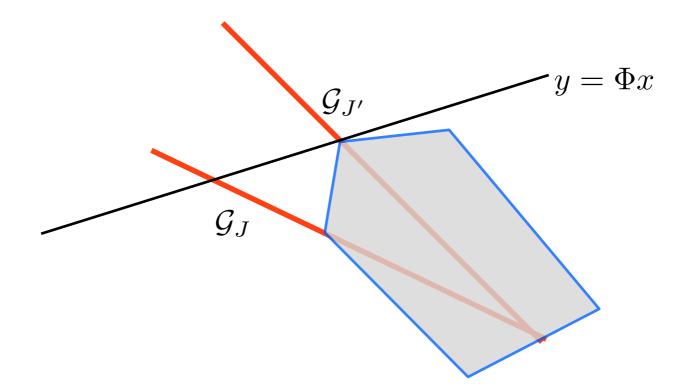
Perspectives

Main idea: \mathcal{G}_J is stable,

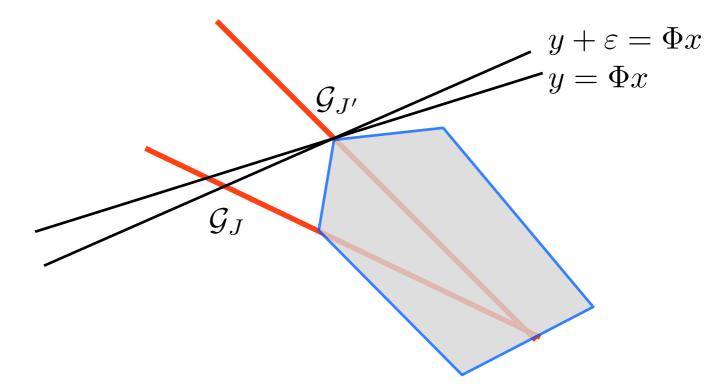
Main idea: \mathcal{G}_J is stable,



Main idea: \mathcal{G}_J is stable,

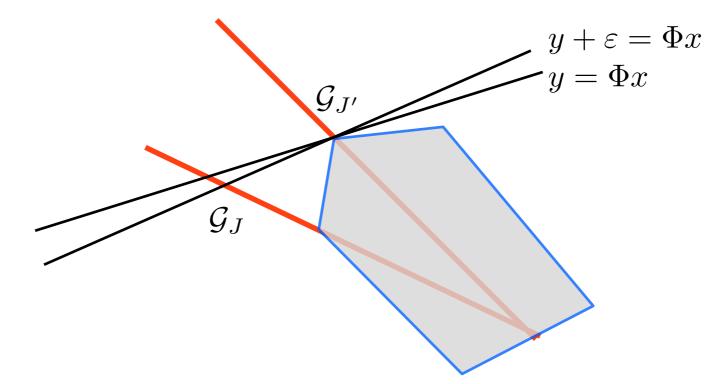


Main idea: \mathcal{G}_J is stable,



Main idea: \mathcal{G}_J is stable,

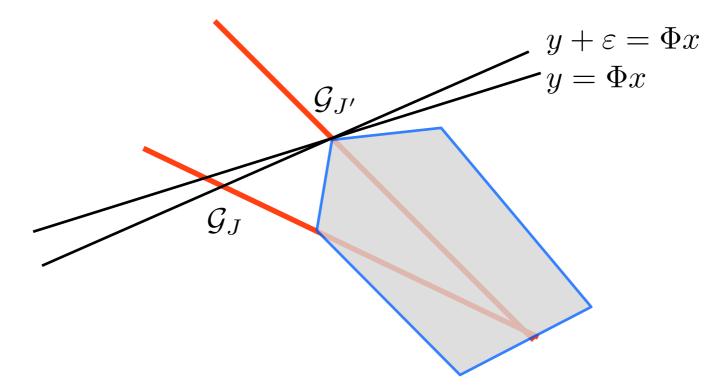
i.e solutions of $\mathcal{P}(y,\lambda)$ and $\mathcal{P}(y+\varepsilon,\lambda)$ lives in the same \mathcal{G}_J .



Affine function: $\bar{y} \mapsto x(\bar{y}) = A\Phi^* \bar{y} - \lambda AD_I s$

Main idea: \mathcal{G}_J is stable,

i.e solutions of $\mathcal{P}(y,\lambda)$ and $\mathcal{P}(y+\varepsilon,\lambda)$ lives in the same \mathcal{G}_J .



Affine function: $\bar{y} \mapsto x(\bar{y}) = A\Phi^* \bar{y} - \lambda AD_I s$

Theorem 1

Except for $y \in \mathcal{H}$, if \bar{y} is close enough from y, then $x(\bar{y})$ is a solution of $\mathcal{P}(\bar{y}, \lambda)$.

 \mathcal{G}_J

Main idea: \mathcal{G}_J is stable,

i.e solutions of $\mathcal{P}(y,\lambda)$ and $\mathcal{P}(y+\varepsilon,\lambda)$ lives in the same \mathcal{G}_J .

 $\mathcal{G}_{J'}$

 $y + \varepsilon = \Phi x$ $y = \Phi x$

definition in few minutes

Affine function: $\bar{y} \mapsto x(\bar{y}) = A \Phi^* \bar{y} - \lambda A D_I s$

Theorem 1

Except for $y \in \mathcal{H}$, if \bar{y} is close enough from y, then $x(\bar{y})$ is a solution of $\mathcal{P}(\bar{y}, \lambda)$.

Problem : Lasso $x^{\star} \in \underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} \ \frac{1}{2} \|y - \Phi x\|_{2}^{2} + \lambda \|D^{*}x\|_{1} \qquad \mathcal{P}(y,\lambda)$

Problem : Lasso

$$x^* \in \operatorname*{argmin}_{x \in \mathbb{R}^N} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda \|D^* x\|_1 \qquad \mathcal{P}(y, \lambda)$$

$$I = \operatorname{supp}(D^*x^*), J = I^c$$

Problem : Lasso

$$x^{\star} \in \underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} \ \frac{1}{2} \|y - \Phi x\|_{2}^{2} + \lambda \|D^{*}x\|_{1} \qquad \mathcal{P}(y, \lambda)$$

$$I = \operatorname{supp}(D^*x^*), J = I^c$$

Subspace of analysis

$$\operatorname{Ker} D_J^* = \mathcal{G}_J$$

Problem : Lasso

$$x^{\star} \in \operatorname*{argmin}_{x \in \mathbb{R}^{N}} \frac{1}{2} \|y - \Phi x\|_{2}^{2} + \lambda \|D^{*}x\|_{1} \qquad \mathcal{P}(y, \lambda)$$

$$I = \operatorname{supp}(D^*x^*), J = I^c$$

Subspace of analysis

$$\operatorname{Ker} D_J^* = \mathcal{G}_J$$

Hypothesis

$$\operatorname{Ker} \Phi \cap \mathcal{G}_J = \{0\}$$

Problem : Lasso

$$x^* \in \operatorname*{argmin}_{x \in \mathbb{R}^N} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda \|D^* x\|_1 \qquad \mathcal{P}(y, \lambda)$$

$$I = \operatorname{supp}(D^*x^*), J = I^c$$

Subspace of analysis

$$\operatorname{Ker} D_J^* = \mathcal{G}_J$$

Hypothesis

$$\operatorname{Ker} \Phi \cap \mathcal{G}_J = \{0\}$$

- We fix observations y
- $-I, J, s = \operatorname{sign}(D^*x^*)$ are fixed by x^*

First Order Conditions

$$x^{\star} \in \underset{x \in \mathbb{R}^N}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda \|D^* x\|_1 \qquad \mathcal{P}(y, \lambda)$$

$$x^{\star} \in \underset{x \in \mathbb{R}^N}{\operatorname{argmin}} \ \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda \|D^* x\|_1 \qquad \mathcal{P}(y, \lambda)$$

Non differentiable problem

 x^* is a minimum of $\mathcal{P}(y,\lambda)$ if, and only if, $0 \in \partial f(x^*)$

$$x^{\star} \in \underset{x \in \mathbb{R}^N}{\operatorname{argmin}} \ \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda \|D^* x\|_1 \qquad \mathcal{P}(y, \lambda)$$

Non differentiable problem

 x^* is a minimum of $\mathcal{P}(y,\lambda)$ if, and only if, $0 \in \partial f(x^*)$ First-order conditions of Lasso

$$x^{\star} \text{ solution of } \mathcal{P}(y,\lambda) \Leftrightarrow \exists \sigma \in \Sigma_{y}(x^{\star}), \|\sigma\|_{\infty} \leqslant 1$$
$$\Sigma_{y}(x) = \left\{ \sigma \in \mathbb{R}^{|J|} \setminus \underbrace{\Phi^{*}(\Phi x - y)}_{\text{Gradient}} + \underbrace{\lambda D_{I}s + \lambda D_{J}\sigma}_{\text{Subdifferential}} = 0 \right\}$$

$$x(y) \in \underset{x \in \mathcal{G}_J}{\operatorname{argmin}} \ \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda \|D^* x\|_1$$

$$x(y) \in \underset{x \in \mathcal{G}_J}{\operatorname{argmin}} \ \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda \|D^* x\|_1$$

$$x(y) \in \underset{x \in \mathcal{G}_J}{\operatorname{argmin}} \ \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda \|D^* x\|_1$$

$$\Phi^* \Phi x(y) = \Phi^* y - \lambda D_I s - \lambda D_J \sigma$$

$$x(y) \in \underset{x \in \mathcal{G}_J}{\operatorname{argmin}} \ \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda \|D^* x\|_1$$

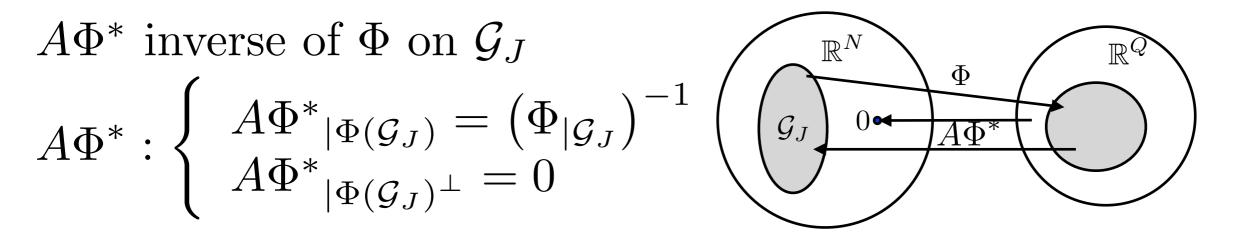
$$\Phi^* \Phi x(y) = \Phi^* y - \lambda D_I s - \lambda D_J \sigma$$

Non-inversible

$$x(y) \in \underset{x \in \mathcal{G}_J}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda \|D^* x\|_1$$

$$\Phi^* \Phi x(y) = \Phi^* y - \lambda D_I s - \lambda D_J \sigma$$

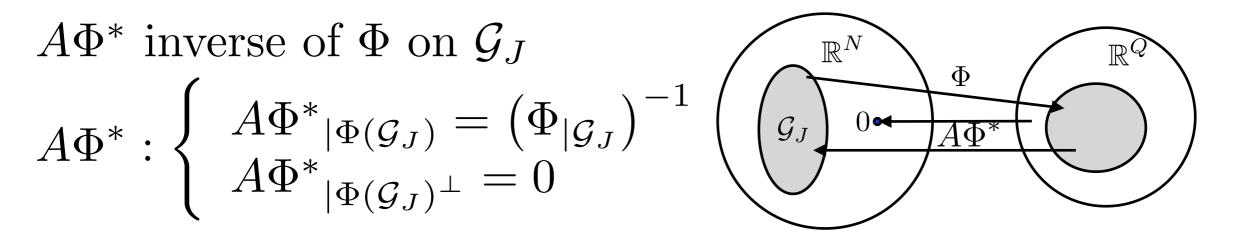
Non-inversible



$$x(y) \in \underset{x \in \mathcal{G}_J}{\operatorname{argmin}} \ \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda \|D^* x\|_1$$

$$\Phi^* \Phi x(y) = \Phi^* y - \lambda D_I s - \lambda D_J \sigma$$

Non-inversible

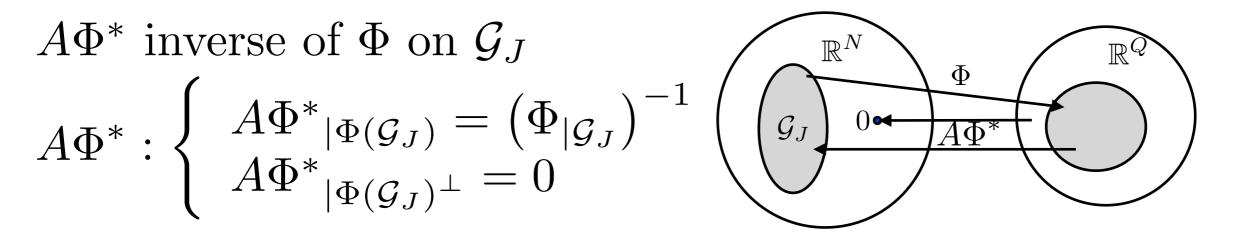


$$x(y) = A\Phi^* y - \lambda AD_I s - \lambda AD_J \sigma$$

$$x(y) \in \underset{x \in \mathcal{G}_J}{\operatorname{argmin}} \ \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda \|D^* x\|_1$$

$$\Phi^* \Phi x(y) = \Phi^* y - \lambda D_I s - \lambda D_J \sigma$$

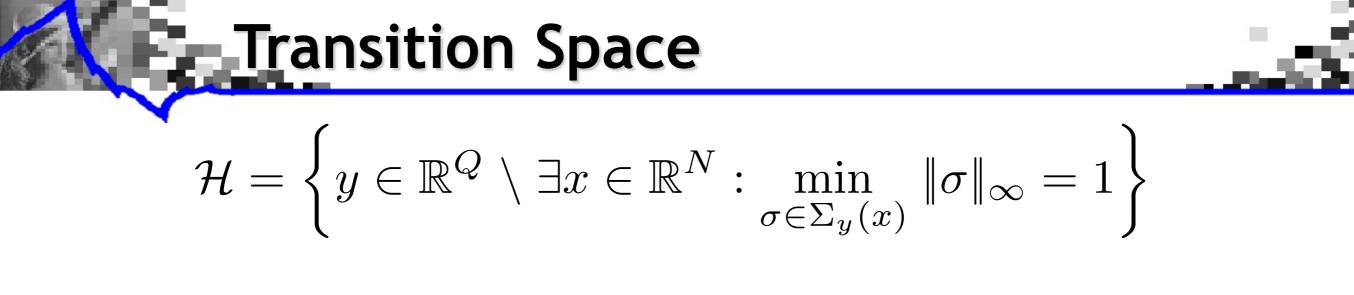
Non-inversible



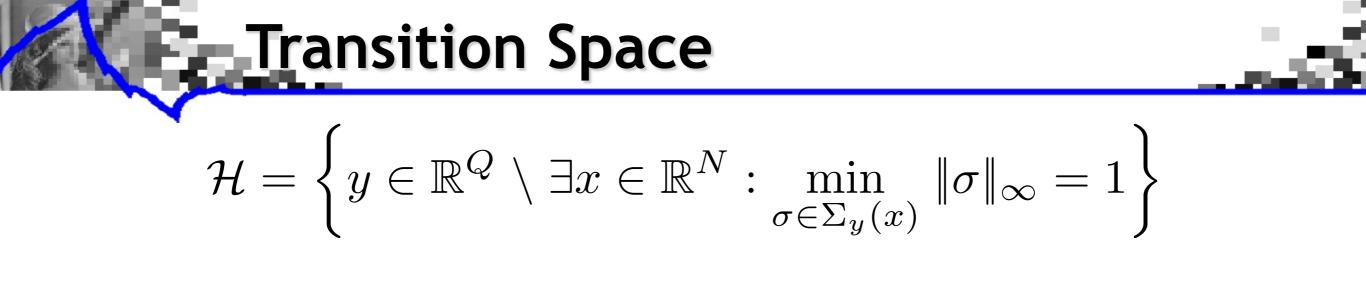
$$x(y) = A\Phi^* y - \lambda AD_I s - \frac{\lambda AD_J \sigma}{= 0} \quad (x(y) \in \mathcal{G}_J)$$

Transition Space

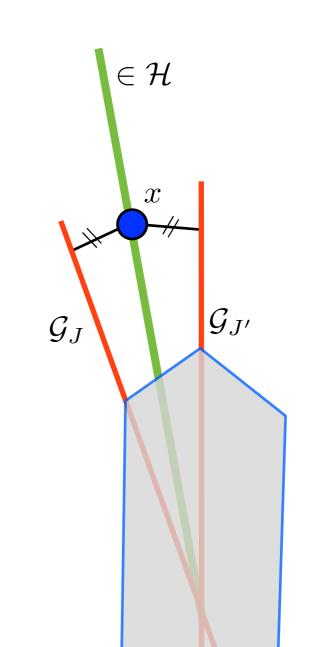
$$\mathcal{H} = \left\{ y \in \mathbb{R}^Q \setminus \exists x \in \mathbb{R}^N : \min_{\sigma \in \Sigma_y(x)} \|\sigma\|_{\infty} = 1 \right\}$$

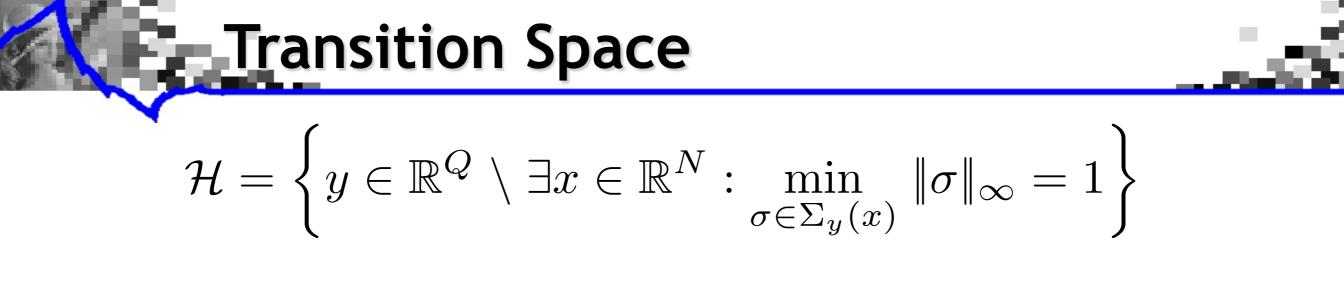


 \mathcal{H} : first order conditions saturation \rightarrow "jump" from \mathcal{G}_J to $\mathcal{G}_{J'}$

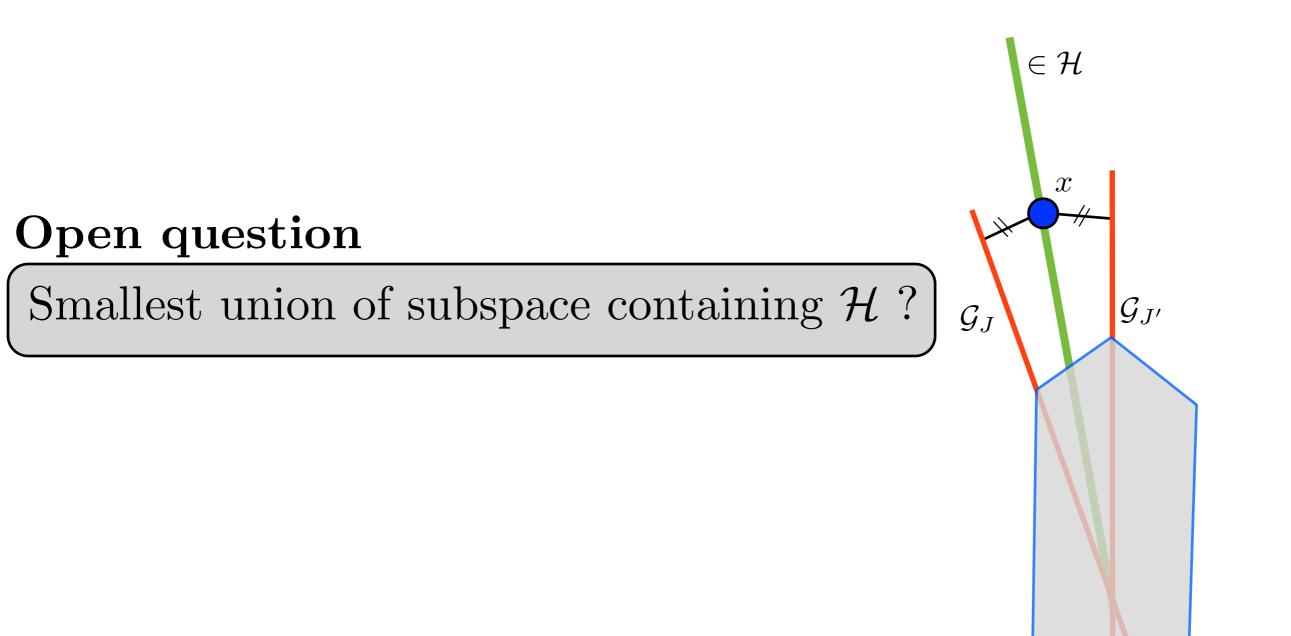


 \mathcal{H} : first order conditions saturation \rightarrow "jump" from \mathcal{G}_J to $\mathcal{G}_{J'}$





 \mathcal{H} : first order conditions saturation \rightarrow "jump" from \mathcal{G}_J to $\mathcal{G}_{J'}$



— Consider x(y) as a mapping of observations $\bar{y} \mapsto x(\bar{y})$

$$\bar{y} \mapsto x(\bar{y}) = A\Phi^*\bar{y} - \lambda AD_Is$$

— Consider x(y) as a mapping of observations $\bar{y} \mapsto x(\bar{y})$

$$\bar{y} \mapsto x(\bar{y}) = A\Phi^*\bar{y} - \lambda AD_Is$$

— Fix \bar{y} close enough to have $\operatorname{sign}(D^*x(y)) = \operatorname{sign}(D^*x(\bar{y}))$

Sign stability

— Consider x(y) as a mapping of observations $\bar{y} \mapsto x(\bar{y})$

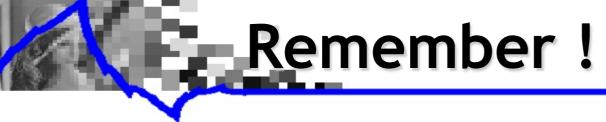
$$\bar{y} \mapsto x(\bar{y}) = A\Phi^*\bar{y} - \lambda AD_Is$$

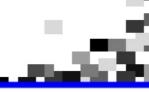
— Fix \bar{y} close enough to have $\operatorname{sign}(D^*x(y)) = \operatorname{sign}(D^*x(\bar{y}))$

Sign stability

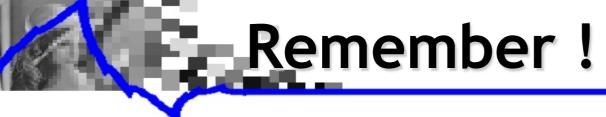
- Check that $x(\bar{y})$ is indeed solution of $\mathcal{P}(\bar{y},\lambda)$

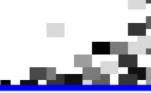
Use of first order conditions

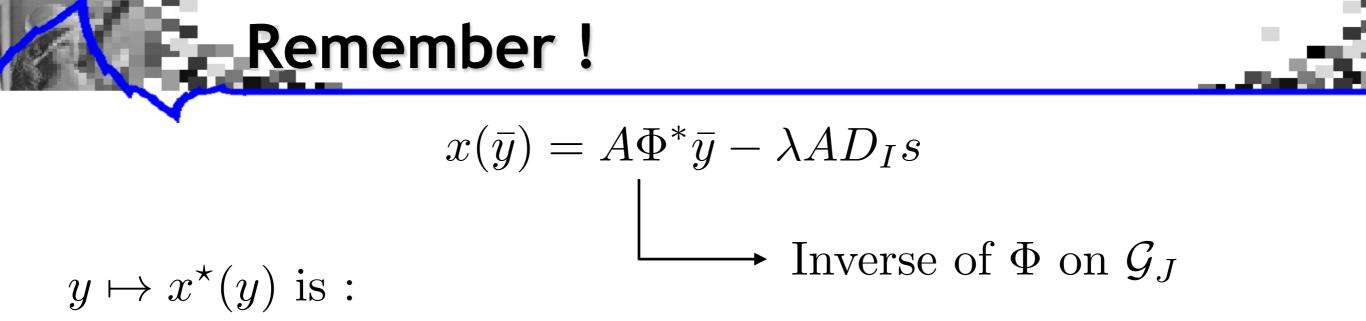




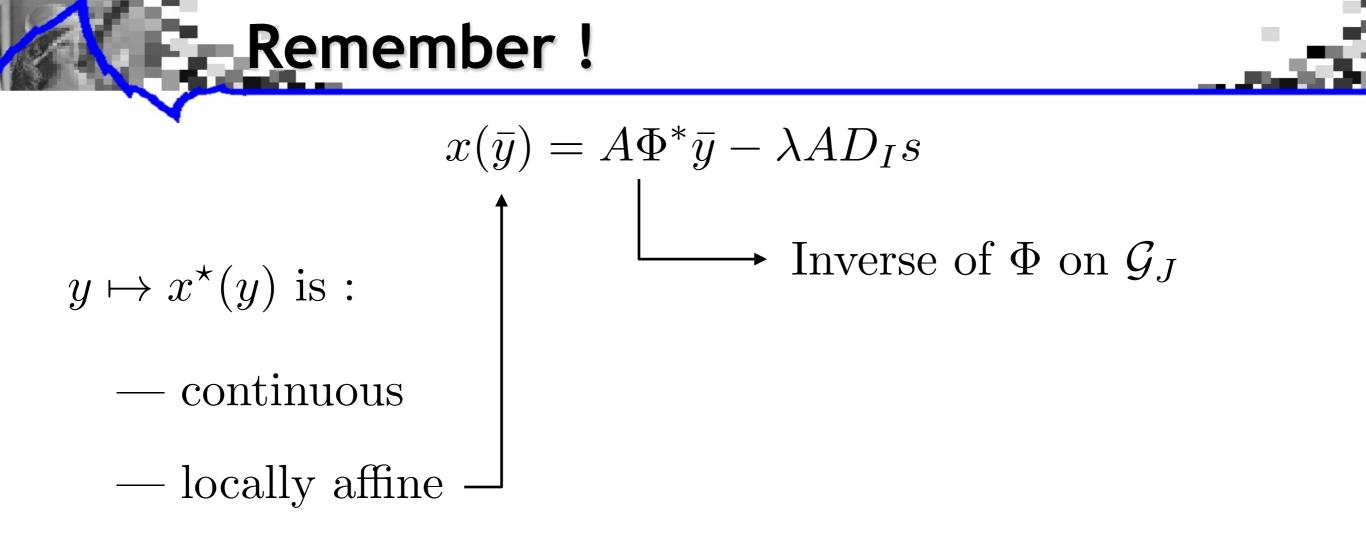
 $x(\bar{y}) = A\Phi^*\bar{y} - \lambda AD_Is$

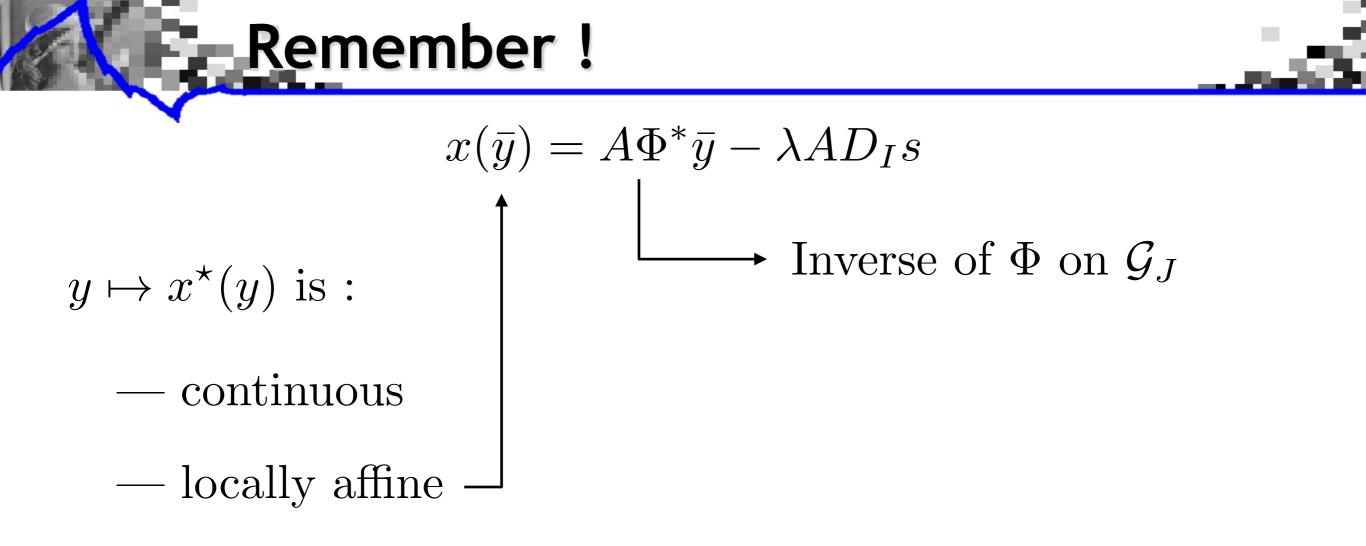




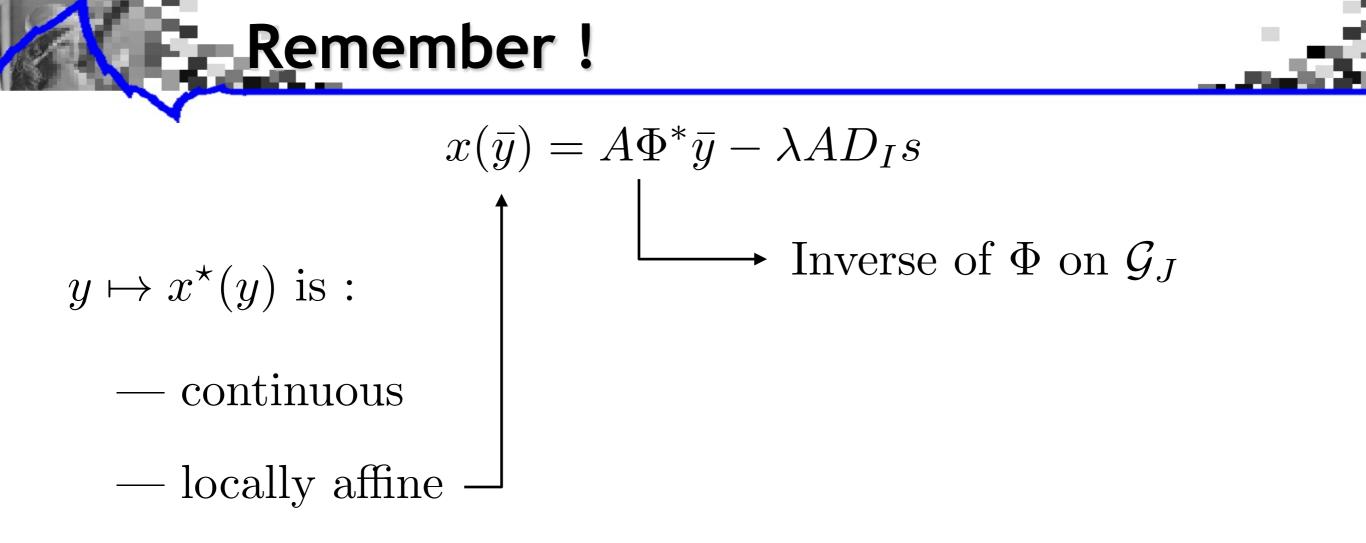


- continuous





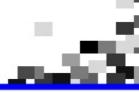
Property given by sign stability



Property given by sign stability

Useful for :

- Robustness study
- SURE denoising risk estimation
- Inverse problem on Φx



• Analysis vs. Synthesis Regularization

Local Parameterization of Analysis Regularization

Identifiability and Stability

Numerical Evaluation

Perspectives

Identifiability: x_0 unique solution of $\mathcal{P}(\Phi x_0, 0)$

$$\{x_0\} \stackrel{?}{=} \underset{\Phi x = \Phi x_0}{\operatorname{argmin}} \|D^* x\|_1$$

Identifiability: x_0 unique solution of $\mathcal{P}(\Phi x_0, 0)$

$$\{x_0\} \stackrel{?}{=} \underset{\Phi x = \Phi x_0}{\operatorname{argmin}} \|D^* x\|_1$$

Strategy: $\mathcal{P}(y,\lambda)$ is almost $\mathcal{P}(y,0)$ for small values of λ

Identifiability: x_0 unique solution of $\mathcal{P}(\Phi x_0, 0)$

$$\{x_0\} \stackrel{?}{=} \underset{\Phi x = \Phi x_0}{\operatorname{argmin}} \|D^* x\|_1$$

Strategy: $\mathcal{P}(y,\lambda)$ is almost $\mathcal{P}(y,0)$ for small values of λ

Assumption: \mathcal{G}_J must be stable for small values of λ

 \longrightarrow Restrictive condition !

But gives a stability results for small noise.

$$\Omega = D_J^+ (\Phi^* \Phi A - \mathrm{Id}) D_I$$

$$F(s) = \min_{w \in \operatorname{Ker} D_J} \|\Omega s - w\|_{\infty}$$

$$\Omega = D_J^+ (\Phi^* \Phi A - \mathrm{Id}) D_I$$

$$F(s) = \min_{w \in \operatorname{Ker} D_J} \|\Omega s - w\|_{\infty}$$

 $(convex \rightarrow computable)$

$$\Omega = D_J^+ (\Phi^* \Phi A - \mathrm{Id}) D_I$$

$$F(s) = \min_{w \in \operatorname{Ker} D_J} \|\Omega s - w\|_{\infty}$$

 $(convex \rightarrow computable)$

Theorem 2

Let $x_0 \in \mathbb{R}^N$ be a fixed vector, and $J = I^c$ where $I = I(D^*x_0)$. Suppose that Ker $\Phi \cap \mathcal{G}_J = \{0\}$. If $F(\operatorname{sign}(D_I^*x_0)) < 1$ then x_0 is identifiable.

$$\Omega = D_J^+ (\Phi^* \Phi A - \mathrm{Id}) D_I$$

$$F(s) = \min_{w \in \operatorname{Ker} D_J} \|\Omega s - w\|_{\infty}$$

 $(convex \rightarrow computable)$

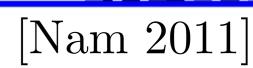
Theorem 2

Let $x_0 \in \mathbb{R}^N$ be a fixed vector, and $J = I^c$ where $I = I(D^*x_0)$. Suppose that Ker $\Phi \cap \mathcal{G}_J = \{0\}$. If $F(\operatorname{sign}(D_I^*x_0)) < 1$ then x_0 is identifiable.

Specializes to Fuchs results for synthesis (D = Id)

[Nam 2011]

Only other work on analysis recovery



Only other work on analysis recovery

 $\Gamma = (MD_J)^+ MD_I$ M^* orthonormal basis of Ker Φ

 $G(s) = \|\Gamma s\|_{\infty}$

[Nam 2011]

Only other work on analysis recovery

 $\Gamma = (MD_J)^+ MD_I$ M^* orthonormal basis of Ker Φ

 $G(s) = \|\Gamma s\|_{\infty}$

Theorem

Let $x_0 \in \mathbb{R}^N$ be a fixed vector, and $J = I^c$ where $I = I(D^*x_0)$. Suppose that Ker $\Phi \cap \mathcal{G}_J = \{0\}$. If $G(\operatorname{sign}(D_I^*x_0)) < 1$ then x_0 is identifiable.

[Nam 2011]

Only other work on analysis recovery

 $\Gamma = (MD_J)^+ MD_I$ M^* orthonormal basis of Ker Φ

 $G(s) = \|\Gamma s\|_{\infty}$

Theorem

Let $x_0 \in \mathbb{R}^N$ be a fixed vector, and $J = I^c$ where $I = I(D^*x_0)$. Suppose that $\operatorname{Ker} \Phi \cap \mathcal{G}_J = \{0\}$. If $G(\operatorname{sign}(D_I^*x_0)) < 1$ then x_0 is identifiable.

More intrinsic criterion

 $\longrightarrow But$ no noise robustness, even for small ones

Idea: Study $\mathcal{P}(y,\lambda)$ for $\lambda \approx 0$

 $x_{\lambda}(\Phi x_0) = A\Phi^* \Phi x_0 - \lambda A D_I s$

Idea: Study $\mathcal{P}(y,\lambda)$ for $\lambda \approx 0$

$$x_{\lambda}(\Phi x_0) = A\Phi^* \Phi x_0 - \lambda A D_I s$$

 λ small enough to have sign $(D^*x_\lambda(\Phi x_0)) = sign(D^*x_0)$

Idea: Study $\mathcal{P}(y,\lambda)$ for $\lambda \approx 0$

$$x_{\lambda}(\Phi x_0) = A\Phi^* \Phi x_0 - \lambda A D_I s$$

 λ small enough to have sign $(D^*x_\lambda(\Phi x_0)) = sign(D^*x_0)$

$$\lim_{\lambda \to 0} x_{\lambda}(\Phi x_0) = A \Phi^* \Phi x_0 = x_0$$

Idea: Study
$$\mathcal{P}(y,\lambda)$$
 for $\lambda \approx 0$
 $x_{\lambda}(\Phi x_0) = A\Phi^*\Phi x_0 - \lambda AD_I s$

 λ small enough to have sign $(D^*x_\lambda(\Phi x_0)) = sign(D^*x_0)$

$$\lim_{\lambda \to 0} x_{\lambda}(\Phi x_0) = A \Phi^* \Phi x_0 = x_0$$

Idea: Study
$$\mathcal{P}(y,\lambda)$$
 for $\lambda \approx 0$
 $x_{\lambda}(\Phi x_0) = A\Phi^*\Phi x_0 - \lambda AD_I s$

 λ small enough to have sign $(D^*x_\lambda(\Phi x_0)) = sign(D^*x_0)$

$$\lim_{\lambda \to 0} x_{\lambda}(\Phi x_0) = A \Phi^* \Phi x_0 = x_0$$

 $F(\operatorname{sign}(D^*x_{\lambda}(\Phi x_0)) < 1 \Rightarrow x_{\lambda}(\Phi x_0) \text{ unique solution}$

Does argmin $||D^*x||_1$ recovers $x_0 + A\Phi^*w$? $\Phi x = y$

Does argmin $||D^*x||_1$ recovers $x_0 + A\Phi^*w$? $\Phi x = y$

Generalization of Theorem 2 : Yes, if ||w|| small enough

Condition : $sign(D^*x_{\lambda}(y)) = sign(D^*x_0)$

Does argmin $||D^*x||_1$ recovers $x_0 + A\Phi^*w$? $\Phi x = y$

Generalization of Theorem 2 : Yes, if ||w|| small enough

Condition : $sign(D^*x_{\lambda}(y)) = sign(D^*x_0)$

 $F(\operatorname{sign}(D^*x_0)) < 1$ gives

- *identifiability*
- small noise robustness

Does argmin $||D^*x||_1$ recovers $x_0 + A\Phi^*w$? $\Phi x = y$

Generalization of Theorem 2 : Yes, if $\|w\|$ small enough

Condition : $sign(D^*x_{\lambda}(y)) = sign(D^*x_0)$

 $F(\operatorname{sign}(D^*x_0)) < 1$ gives

- *identifiability*
- small noise robustness

Question: And for an arbitrary noise ?

Settings: $y = \Phi x_0 + w$, with w bounded noise.

Settings: $y = \Phi x_0 + w$, with w bounded noise.

identifiability of vector \rightarrow identifiability of support

Settings: $y = \Phi x_0 + w$, with w bounded noise.

identifiability of vector \rightarrow identifiability of support

$$\operatorname{ARC}(I) = \max_{x \in \mathcal{G}_J} F(\operatorname{sign}(D_I^* x))$$

Settings: $y = \Phi x_0 + w$, with w bounded noise.

identifiability of vector \rightarrow identifiability of support

$$\operatorname{ARC}(I) = \max_{x \in \mathcal{G}_J} F(\operatorname{sign}(D_I^* x))$$

Theorem 3

Suppose ARC(I) < 1 and $\lambda > K \frac{\|w\|}{1 - \text{ARC}(I)}$ then $x_{\lambda}(y)$ is the unique solution of $\mathcal{P}(y, \lambda)$ and $\|x_{\lambda}(\bar{y}) - x_0\| = O(\lambda)$ Remember !

$$F(s) = \min_{w \in \operatorname{Ker} D_J} \|\Omega s - w\|_{\infty}$$

sign

Noiseless

Vector identifiability

 $\operatorname{ARC}(I) = \max_{x \in \mathcal{G}_J} F(\operatorname{sign}(D_I^* x))$

support

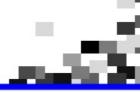
Noisy

Support identifiability

We give a sufficient condition for identifiability.

We give a sufficient condition for identifiability.

How far are we from a necessary condition ?



• Analysis vs. Synthesis Regularization

Local Parameterization of Analysis Regularization

Identifiability and Stability

Numerical Evaluation

Perspectives

Proximal Operator

f l.s.c convex function from C convex of an Hilbert \mathbb{H} in \mathbb{R} .

Proximal Operator

f l.s.c convex function from C convex of an Hilbert \mathbb{H} in \mathbb{R} .

Proximal operator

$$\operatorname{prox}_{f}(x) = \operatorname{argmin}_{u \in \mathbb{R}^{N}} \left\{ f(u) + \frac{1}{2} \|u - x\|_{2}^{2} \right\}$$

Proximal Operator

f l.s.c convex function from C convex of an Hilbert \mathbb{H} in \mathbb{R} .

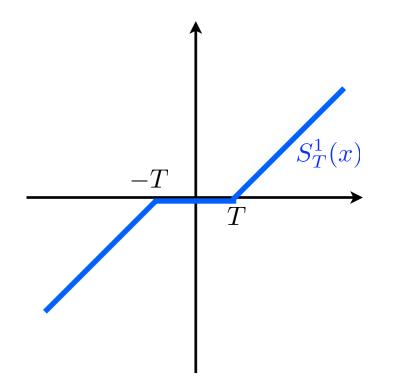
Proximal operator

$$\operatorname{prox}_{f}(x) = \operatorname{argmin}_{u \in \mathbb{R}^{N}} \left\{ f(u) + \frac{1}{2} \|u - x\|_{2}^{2} \right\}$$

 $Fundamental\ examples:$

$$\operatorname{prox}_{\|\cdot\|_1} = S_T^1.$$

$$\operatorname{prox}_{i_C} = P_C$$



How to Solve These Regularizations ?-

Primal-dual schemes

$$\min_{x \in \mathbb{R}^N} \mathcal{L}(K(x)) \quad \text{where} \quad \begin{cases} \mathcal{L}(g, u) = \frac{1}{2} \|y - g\|^2 + \lambda \|u\|_1 \\ K(x) = (\Phi x, D^* x) \end{cases}$$

How to Solve These Regularizations ?-

Primal-dual schemes

$$\min_{x \in \mathbb{R}^N} \mathcal{L}(K(x)) \quad \text{where} \quad \begin{cases} \mathcal{L}(g, u) = \frac{1}{2} \|y - g\|^2 + \lambda \|u\|_1 \\ K(x) = (\Phi x, D^* x) \end{cases}$$

Alternating Direction Method of Multipliers [Chambolle, Pock]

$$u_n = \operatorname{prox}_{\sigma \mathcal{L}^*} (u_{n-1} + \sigma K(z_{n-1}))$$
$$x_n = \operatorname{prox}_{\tau G} (x_{n-1} - \tau K^*(u_n))$$
$$z_n = x_n + \theta (x_n - x_{n-1})$$

How to Solve These Regularizations ?-

Primal-dual schemes

$$\min_{x \in \mathbb{R}^N} \mathcal{L}(K(x)) \quad \text{where} \quad \begin{cases} \mathcal{L}(g, u) = \frac{1}{2} \|y - g\|^2 + \lambda \|u\|_1 \\ K(x) = (\Phi x, D^* x) \end{cases}$$

Alternating Direction Method of Multipliers [Chambolle, Pock]

$$u_n = \operatorname{prox}_{\sigma \mathcal{L}^*} (u_{n-1} + \sigma K(z_{n-1}))$$
$$x_n = \operatorname{prox}_{\tau G} (x_{n-1} - \tau K^*(u_n))$$
$$z_n = x_n + \theta (x_n - x_{n-1})$$

For
$$\mathcal{P}(y,0), \|y-g\|^2 \to i_{\{y\}}$$

Computing Criterions

Unconstrained formulation

Computing Criterions

Unconstrained formulation

ARC difficult to compute (non-convex)

$$ARC(I) = \max_{x \in \mathcal{G}_J} F(sign(D_I^*x)) \quad \text{non-convex}$$

$$\leqslant \quad wARC(I) = \max_{s \in \{-1,1\}^{|J|}} F(s) \quad \text{non-convex}$$

$$\leqslant \quad oARC(I) = \|\Omega\|_{\infty \to \infty} \quad easy$$

$$\Theta = \bigcup_{k \in \{1...P\}} \Theta_k \quad \text{where} \quad \Theta_k = \{\mathcal{G}_J \setminus \dim \mathcal{G}_J = k\}$$

 $\Theta = \bigcup_{k \in \{1...P\}} \Theta_k \quad \text{where} \quad \Theta_k = \{\mathcal{G}_J \setminus \dim \mathcal{G}_J = k\}$

Sparsity $||D^*x_0||_0$ is not a good parameter

 $\Theta = \bigcup_{k \in \{1...P\}} \Theta_k \quad \text{where} \quad \Theta_k = \{\mathcal{G}_J \setminus \dim \mathcal{G}_J = k\}$

Sparsity $||D^*x_0||_0$ is not a good parameter

D redundant Gaussian i.i.d matrix $N \times P$ $\|D^*x_0\|_0 < P - N \Rightarrow x_0 = 0 !$

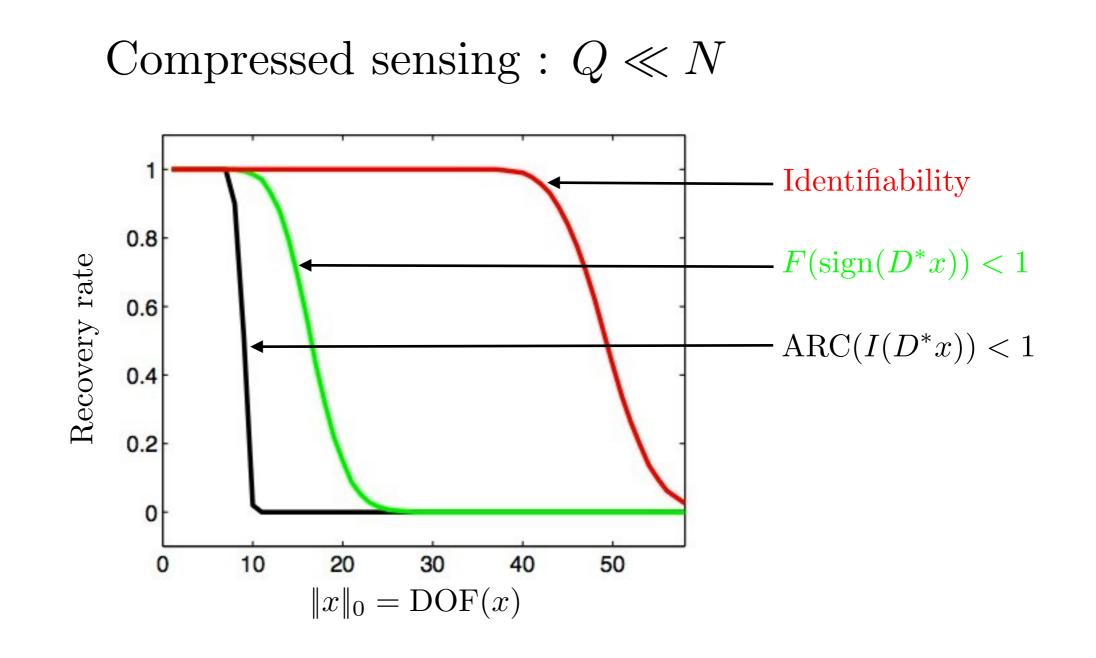
 $\Theta = \bigcup_{k \in \{1...P\}} \Theta_k \quad \text{where} \quad \Theta_k = \{\mathcal{G}_J \setminus \dim \mathcal{G}_J = k\}$

Sparsity $||D^*x_0||_0$ is not a good parameter

D redundant Gaussian i.i.d matrix $N \times P$ $\|D^*x_0\|_0 < P - N \Rightarrow x_0 = 0 !$

Good one : $DOF(x) = \dim \mathcal{G}_J$

1) Synthesis results



ಎಷ್

2) Analysis results

D,Φ Gaussian i.i.d random matrices

2) Analysis results

D,Φ Gaussian i.i.d random matrices

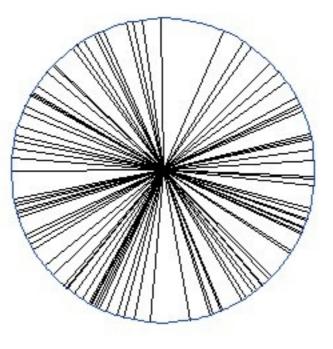
- Many dependancies between columns
 - \longrightarrow Strong unstability

2) Analysis results

D,Φ Gaussian i.i.d random matrices

Many dependancies between columns

 \longrightarrow Strong unstability



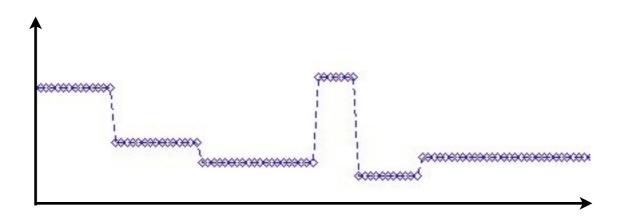
Close to ℓ_2 ball !

$D^* = \nabla, \Phi = \mathrm{Id}$

Limits : TV Instability

$D^* = \nabla, \Phi = \mathrm{Id}$

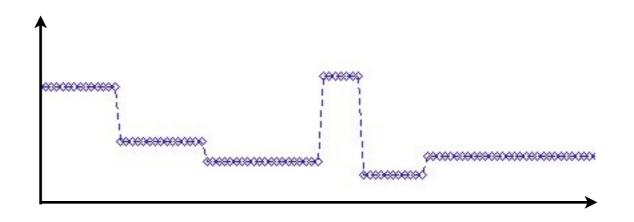
 Θ_k : piecewise constant signals with k-1 step.



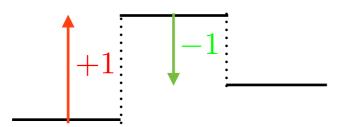
Limits : TV Instability

$D^* = \nabla, \Phi = \mathrm{Id}$

 Θ_k : piecewise constant signals with k-1 step.



"Box"

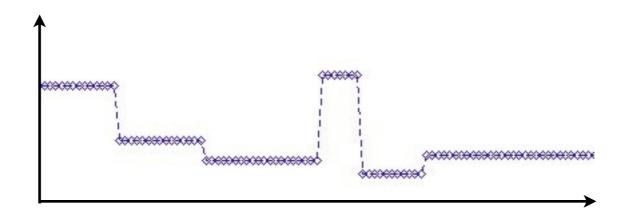


$$F(s) = 1 - \varepsilon$$

Limits : TV Instability

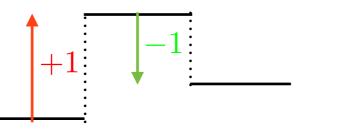
$D^* = \nabla, \Phi = \mathrm{Id}$

 Θ_k : piecewise constant signals with k-1 step.

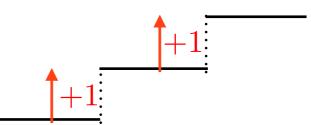


"Box"

"Staircase"

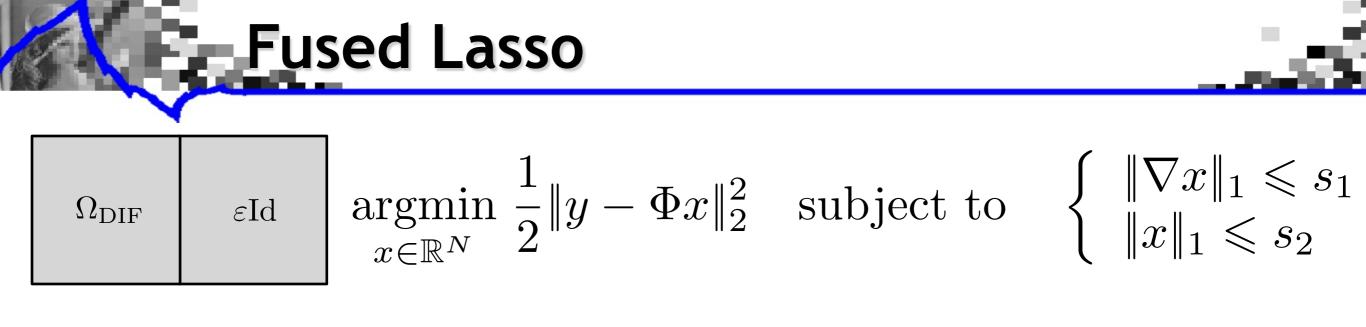


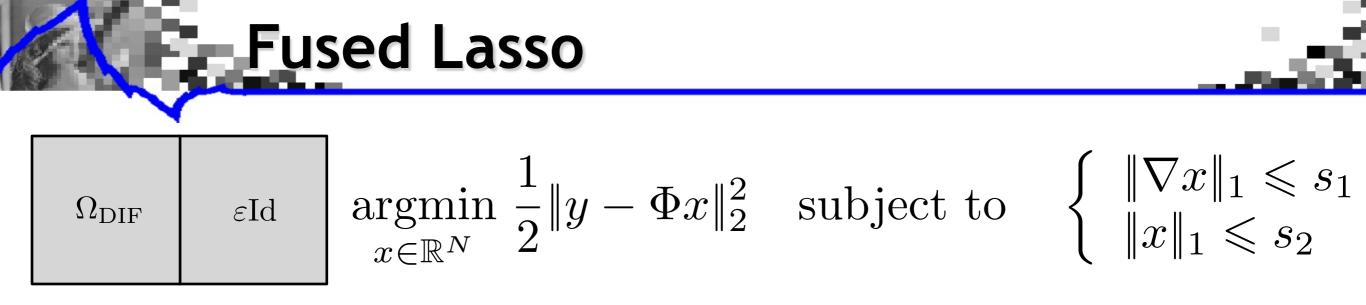
 $F(s) = 1 - \varepsilon$



F(s) = 1

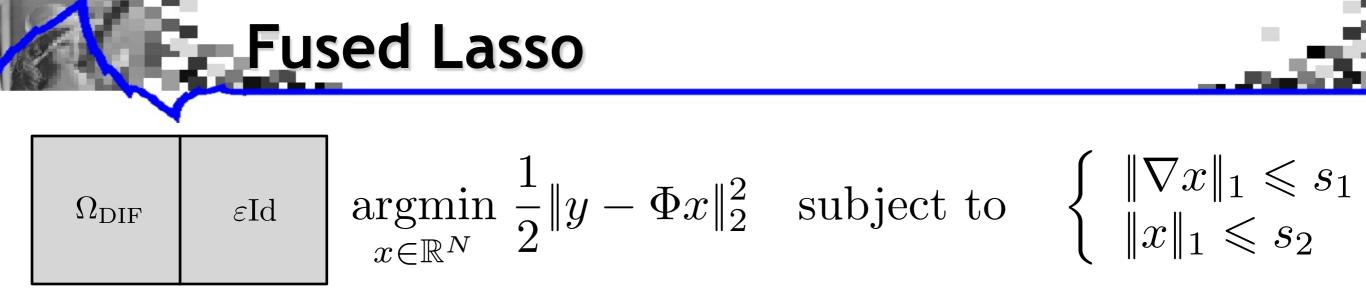
No noise stability even for small one





Signal Model: Characteristic functions sum

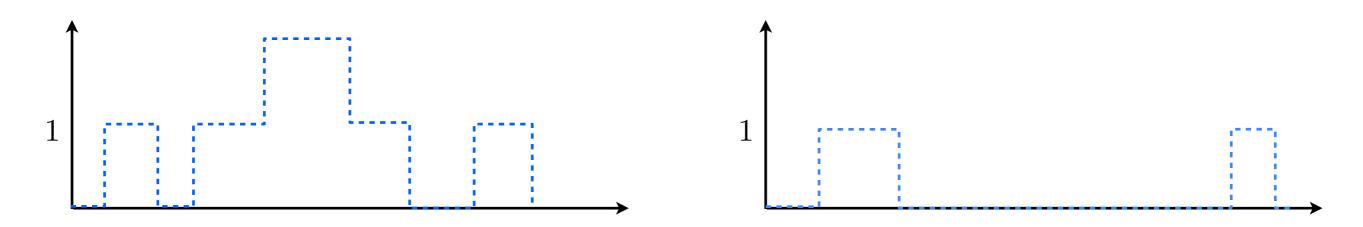
$$\Theta_2: x_0 = \mathbf{1}_{[a,b]} + \mathbf{1}_{[c,d]}$$

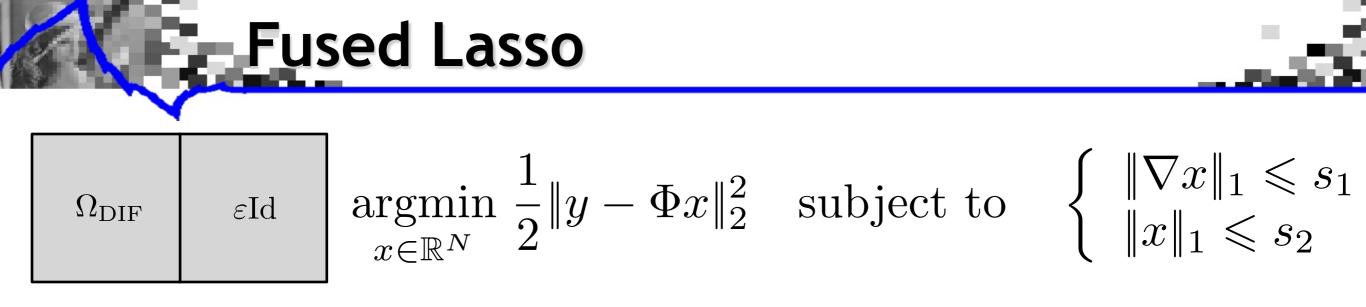


Signal Model: Characteristic functions sum

$$\Theta_2: x_0 = \mathbf{1}_{[a,b]} + \mathbf{1}_{[c,d]}$$

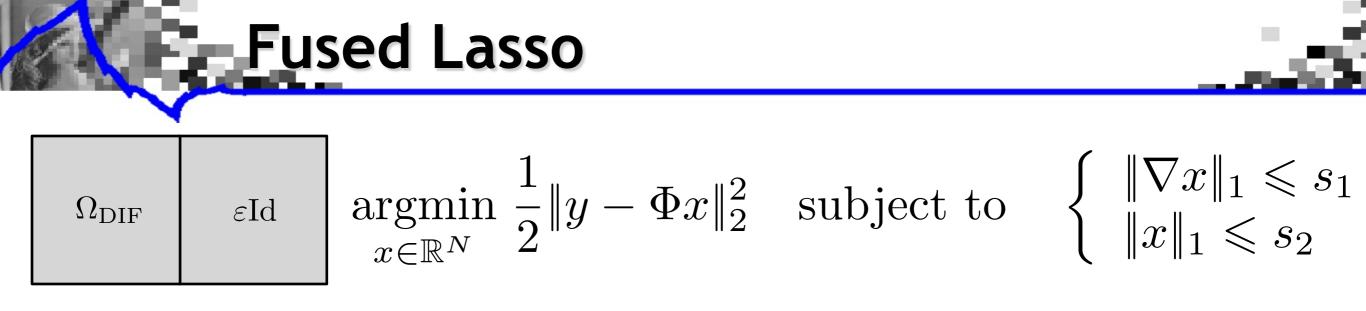
No overlap



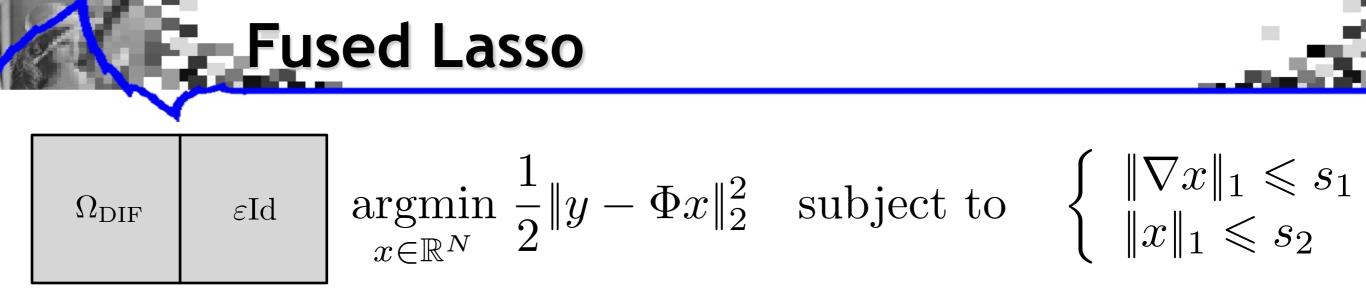


$[a,b] \cap [c,d] \neq \emptyset \Rightarrow F(x_0) \ge 1$

no noise robustness



$[a,b] \cap [c,d] = \emptyset \Rightarrow 2$ situations

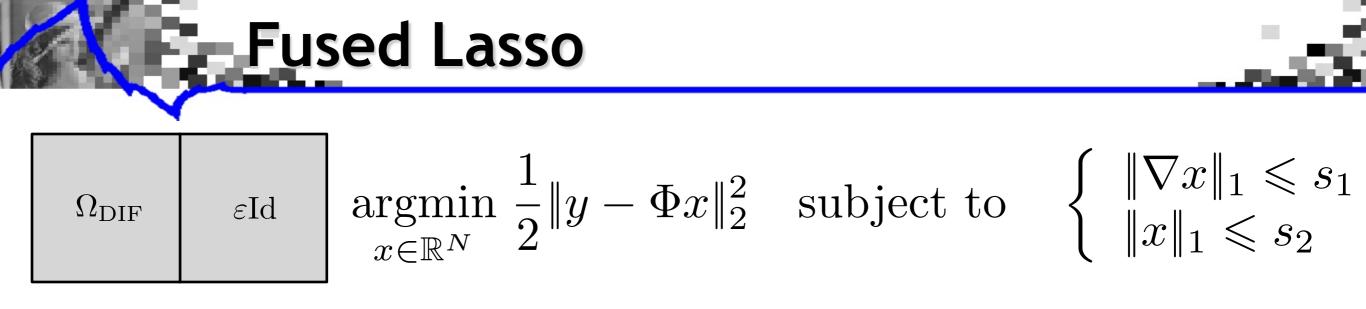


$[a,b] \cap [c,d] = \emptyset \Rightarrow 2$ situations

 $|c-b| \leqslant \xi(\varepsilon)$

 $F(\operatorname{sign}(D^*x_0)) \ge 1$

no noise robustness



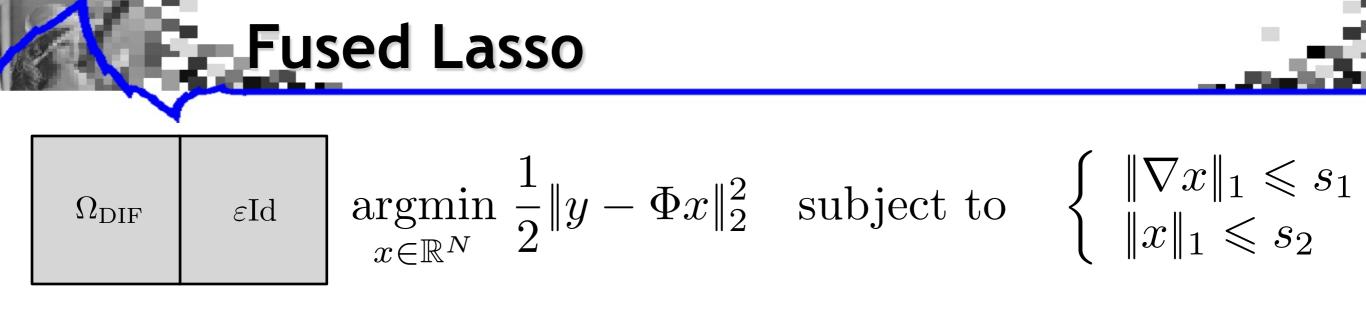
 $[a, b] \cap [c, d] = \emptyset \Rightarrow 2$ situations

 $|c-b| \leqslant \xi(\varepsilon)$ $|c-b| > \xi(\varepsilon)$

 $F(\operatorname{sign}(D^*x_0)) \ge 1$ $F(\operatorname{sign}(D^*x_0)) = \operatorname{ARC}(I) < 1$

no noise robustness

strong noise robustness



 $[a, b] \cap [c, d] = \emptyset \Rightarrow 2$ situations

 $|c-b| > \xi(\varepsilon)$ $|c-b| \leqslant \xi(\varepsilon)$

 $F(\operatorname{sign}(D^*x_0)) \ge 1$ $F(\operatorname{sign}(D^*x_0)) = \operatorname{ARC}(I) < 1$

no noise robustness

strong noise robustness

Haar : similar results

— Analysis regularization is robust

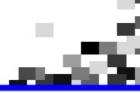
— Analysis regularization is robust

— Geometry (union of subspaces) : key concept for recovery

— Analysis regularization is robust

— Geometry (union of subspaces) : key concept for recovery

— Sparsity is not univoquely defined



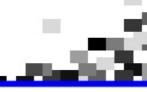
• Analysis vs. Synthesis Regularization

Local Parameterization of Analysis Regularization

Identifiability and Stability

Numerical Evaluation

• Perspectives



- Total Variation identifiability
 - Existence of a better criterion to ensure noisy recovery ?

- Total Variation identifiability
 - Existence of a better criterion to ensure noisy recovery ?
 - Continuous model
 - Work initiated by Chambolle in TV

- Total Variation identifiability
 - Existence of a better criterion to ensure noisy recovery ?
- Continuous model
 - Work initiated by Chambolle in TV
- Larger class of priors J
 - Block sparsity $\|\cdot\|_{p,q}$

Deterministic theorem \rightarrow treat the noise as a random variable

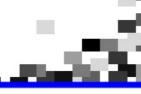
— Total Variation identifiability

Existence of a better criterion to ensure noisy recovery ?

— Continuous model

Work initiated by Chambolle in TV

- Larger class of priors J
 - Block sparsity $\|\cdot\|_{p,q}$
- Real-world recovery results
 - Almost equal support recovery



Joint work with

- Gabriel Peyré (CEREMADE, Dauphine)
- Charles Dossal (IMB, Bordeaux I)
- Jalal Fadili (GREYC, ENSICAEN)

Any questions ?

 $x(\bar{y}) = A\Phi^*\bar{y} - \lambda AD_Is$

 $x(\bar{y}) = A\Phi^*\bar{y} - \lambda AD_Is$

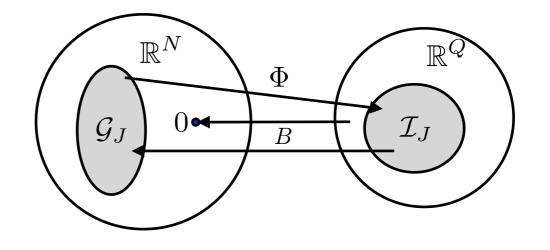
 $s = \operatorname{sign}(D_I^* x(y))$

$$x(\bar{y}) = A\Phi^*\bar{y} - \lambda AD_Is$$

 $s = \operatorname{sign}(D_I^* x(y))$

 $B = A\Phi^*$ inverse of Φ on \mathcal{G}_J

$$\mathcal{G}_J \stackrel{B}{\cong} \mathcal{I}_J = \Phi(\mathcal{G}_J)$$



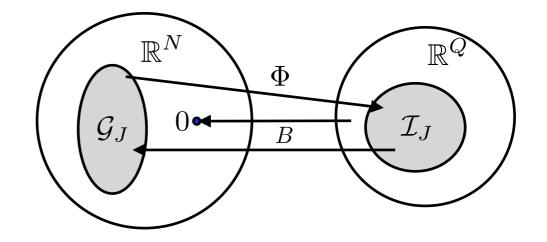
$$x(\bar{y}) = A\Phi^*\bar{y} - \lambda AD_Is$$

 $s = \operatorname{sign}(D_I^* x(y))$

 $B = A\Phi^*$ inverse of Φ on \mathcal{G}_J

$$\mathcal{G}_J \stackrel{B}{\cong} \mathcal{I}_J = \Phi(\mathcal{G}_J)$$

$$B: \begin{cases} B_{|\mathcal{I}_J} = \left(\Phi_{|\mathcal{G}_J}\right)^{-1} \\ B_{|\mathcal{I}_J^{\perp}} = 0 \end{cases}$$



U BON of \mathcal{G}_J $B = U(U^* \Phi^* \Phi U)^{-1} U^* \Phi^*$

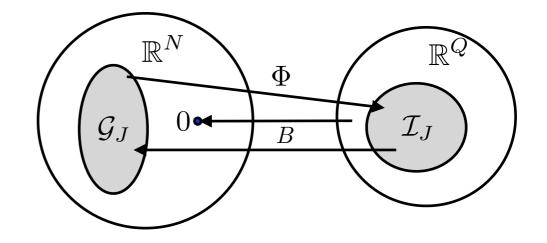
$$x(\bar{y}) = A\Phi^*\bar{y} - \lambda AD_Is$$

 $s = \operatorname{sign}(D_I^* x(y))$

 $B = A\Phi^*$ inverse of Φ on \mathcal{G}_J

$$\mathcal{G}_J \stackrel{B}{\cong} \mathcal{I}_J = \Phi(\mathcal{G}_J)$$

$$B: \begin{cases} B_{|\mathcal{I}_J} = \left(\Phi_{|\mathcal{G}_J}\right)^{-1} \\ B_{|\mathcal{I}_J^{\perp}} = 0 \end{cases}$$



U BON of \mathcal{G}_J $B = U(U^* \Phi^* \Phi U)^{-1} U^* \Phi^*$

Efficient computation

$$y = Bx = \underset{D^*z=0}{\operatorname{argmin}} \|z - \Phi x\|_2^2$$

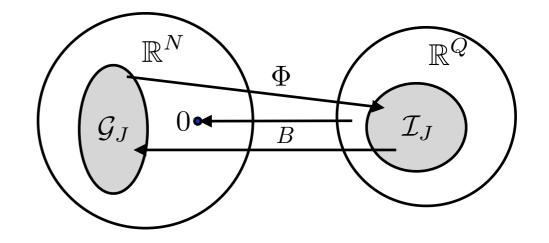
$$x(\bar{y}) = A\Phi^*\bar{y} - \lambda AD_Is$$

 $s = \operatorname{sign}(D_I^* x(y))$

 $B = A\Phi^*$ inverse of Φ on \mathcal{G}_J

$$\mathcal{G}_J \stackrel{B}{\cong} \mathcal{I}_J = \Phi(\mathcal{G}_J)$$

$$B: \begin{cases} B_{|\mathcal{I}_J} = \left(\Phi_{|\mathcal{G}_J}\right)^{-1} \\ B_{|\mathcal{I}_J^{\perp}} = 0 \end{cases}$$



U BON of \mathcal{G}_J $B = U(U^* \Phi^* \Phi U)^{-1} U^* \Phi^*$

Efficient computation

$$y = Bx = \underset{D^*z=0}{\operatorname{argmin}} \|z - \Phi x\|_2^2$$

 $C\begin{pmatrix} y\\ \mu \end{pmatrix} = \begin{pmatrix} \Phi x\\ 0 \end{pmatrix}$ where $C = \begin{pmatrix} \Phi^*\Phi & D\\ D^* & 0 \end{pmatrix}$