Recovery Guarantees for Low Complexity Models

Samuel Vaiter

CNRS & Université de Bourgogne Joint work with J. Fadili & G. Peyré

> January 19, 2017 Aachen

Recover data x_0 from observations y

This talk:

- finite dimensional setting $\rightarrow x_0 \in \mathbb{R}^n$, $y \in \mathbb{R}^q$
- No (explicit) assumption on the distribution of the noise w
- Φ is the *linear* measurement/degradation operator

Recover data x_0 from observations y

$$\hat{x_0} = \frac{\hat{y}}{\hat{k}} - \frac{\hat{w}}{\hat{k}}$$

Recover data x_0 from observations y

$$\hat{x_0} = \frac{\hat{y}}{\hat{k}} - \frac{\hat{w}}{\hat{k}}$$

Recover data x_0 from observations y

$$\hat{x_0} = \frac{\hat{y}}{\hat{k}}$$

Recover data x_0 from observations y

$$\hat{x_0} = \frac{\hat{y}}{\hat{k}}$$

Recover data x_0 from observations y

Summary: the inverse problem of recovering x_0 from y is ill-posed

As we just saw (in a different language), the optimization problem

$$\underset{x}{\operatorname{argmin}} \|y - \Phi x\|_2^2$$

leads to an unstable solution.

As we just saw (in a different language), the optimization problem

$$\underset{x}{\operatorname{argmin}} \|y - \Phi x\|_2^2$$

leads to an unstable solution.

Could we cast an another optimization scheme with better properties ?

As we just saw (in a different language), the optimization problem

$$\underset{x}{\operatorname{argmin}} \|y - \Phi x\|_2^2$$

leads to an unstable solution.

Could we cast an another optimization scheme with better properties ?

 \rightarrow idea of regularization.

Argmin
$$||y - \Phi x||_2^2 + \lambda J(x)$$

$$\underset{x}{\operatorname{Argmin}} \|y - \Phi x\|_2^2 + \lambda \|x\|_2^2$$

Natural idea: a physical signal has a (relatively) low energy

Argmin
$$||y - \Phi x||_2^2 + \lambda ||x||_2^2$$

Natural idea: a physical signal has a (relatively) low energy

$$\underset{x}{\operatorname{Argmin}} \|y - \Phi x\|_2^2 + \lambda J(x)$$

But wait, x_0 is a family of spikes, why not just count them?

$$\underset{x}{\operatorname{Argmin}} \|y - \Phi x\|_2^2 + \lambda |\operatorname{supp}(x)|$$

But wait, x_0 is a family of spikes, why not just count them? \rightarrow sparsity

$$\underset{x}{\operatorname{Argmin}} \|y - \Phi x\|_2^2 + \lambda |\operatorname{supp}(x)|$$

But wait, x_0 is a familly of spikes, why not just count them? \rightarrow sparsity Issues: $x \mapsto |\operatorname{supp}(x)|$ is non-differentiable, non-convex

$$\underset{x}{\operatorname{Argmin}} \|y - \Phi x\|_2^2 + \lambda |\operatorname{supp}(x)|$$

But wait, x_0 is a familly of spikes, why not just count them? \rightarrow sparsity Issues: $x \mapsto |\sup(x)|$ is non-differentiable, non-convex Two alternatives:

- Use a greedy solver
- Embrace the power of convex relaxation

$$\underset{x}{\mathsf{Argmin}} \|y - \Phi x\|_2^2 + \lambda \|x\|_1$$

But wait, x_0 is a familly of spikes, why not just count them? \rightarrow sparsity Issues: $x \mapsto |\sup(x)|$ is non-differentiable, non-convex Two alternatives:

- Use a greedy solver
- Embrace the power of convex relaxation

Argmin
$$||y - \Phi x||_2^2 + \lambda ||x||_1$$

But wait, x_0 is a familly of spikes, why not just count them? \rightarrow sparsity Issues: $x \mapsto |\sup(x)|$ is non-differentiable, non-convex Two alternatives:

- Use a greedy solver
- Embrace the power of convex relaxation

The connection between $|\operatorname{supp}(\cdot)|$ and $\|\cdot\|_1$ is known as compressed sensing at Aachen

/1	1	2	3	4	5\
1	1	2	3	4	5
1	3	2	2	4	2
1	1	2	3	4	5 5 2 5
1	4	2	2	4	1
1	1	2	3	4	5
$\backslash 1$	1	2	3	4	1 5 5

Main Assumption

 x_0 lives in a low-dimensional submanifold of \mathbb{R}^n

Main Assumption

 x_0 lives in a low-dimensional submanifold of \mathbb{R}^n

e.g. x_0 is sparse, block-sparse, piecewise constant, piecewise affine, low-rank, etc.

Main Assumption

 x_0 lives in a low-dimensional submanifold of \mathbb{R}^n

e.g. x_0 is sparse, block-sparse, piecewise constant, piecewise affine, low-rank, etc.

Our goal: encompass all these priors under a single (convex) umbrella.

Convex Analysis 101: Euler Equation

$$\mathcal{E}$$
 convex + smooth

$$0 = \nabla \mathcal{E}(x^*) \Longleftrightarrow x^* \in \operatorname{Argmin} \, \mathcal{E}(x)$$

$$\partial \mathcal{E}(t) = \left\{ \eta : \ \mathcal{E}(t') \geqslant \mathcal{E}(t) + \langle \eta, \ t' - t \rangle \right\}$$

Convex Analysis 101: Euler Equation

$$\mathcal{E}$$
 convex + smooth

$$0 = \nabla \mathcal{E}(x^{\star}) \Longleftrightarrow x^{\star} \in \operatorname{Argmin} \, \mathcal{E}(x)$$

 \mathcal{E} convex

$$0 \in \partial \mathcal{E}(x^*) \iff x^* \in \operatorname{Argmin} \ \mathcal{E}(x)$$

Part I: ℓ^2 -stability

In order to solve

$$y = \Phi x_0 + w$$

we consider for a convex function J, the optimization

$$x_{y,\lambda}^{\star} \in \underset{x \in \mathbb{R}^n}{\operatorname{Argmin}} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda J(x)$$
 $(\mathcal{P}_{y,\lambda})$

Goal

Provide an upper bound of the estimation error $\|x_{\nu,\lambda}^{\star} - x_0\|$

 $C = \partial J(x)$: subdifferential of J at xaff(C): affine hull of Cri C: relative interior of Cpar(C): subspace parallel to aff(C)

$$S_x = \operatorname{par} \partial J(x), \ T_x = S_x^{\perp}, \ e_x = \Pi_{T_x}(\partial J(x))$$

 $C = \partial J(x)$: subdifferential of J at x aff(C): affine hull of C ri C: relative interior of C par(C): subspace parallel to aff(C)

$$S_x = \operatorname{par} \partial J(x), \ T_x = S_x^{\perp}, \ e_x = \Pi_{T_x}(\partial J(x))$$

 $C = \partial J(x)$: subdifferential of J at x aff(C): affine hull of C ri C: relative interior of C par(C): subspace parallel to aff(C)

$$S_x = \operatorname{par} \partial J(x), \ T_x = S_x^{\perp}, \ e_x = \Pi_{T_x}(\partial J(x))$$

 $C = \partial J(x)$: subdifferential of J at xaff(C): affine hull of Cri C: relative interior of Cpar(C): subspace parallel to aff(C)

$$S_x = \operatorname{par} \partial J(x), \ T_x = S_x^{\perp}, \ e_x = \Pi_{T_x}(\partial J(x))$$

 $C = \partial J(x)$: subdifferential of J at x aff(C): affine hull of C ri C: relative interior of C par(C): subspace parallel to aff(C)

$$S_x = \operatorname{par} \partial J(x), \ T_x = S_x^{\perp}, \ e_x = \Pi_{T_x}(\partial J(x))$$

 $C = \partial J(x)$: subdifferential of J at x aff(C): affine hull of C ri C: relative interior of C par(C): subspace parallel to aff(C)

$$S_x = \operatorname{par} \partial J(x), \ T_x = S_x^{\perp}, \ \mathbf{e}_x = \Pi_{T_x}(\partial J(x))$$

(Non-Degenerated) Source Condition

$$\exists \eta \in \mathbb{R}^q \quad \text{s.t} \quad \Phi^* \eta \in \partial J(x)$$
 (SC_x)

(Non-Degenerated) Source Condition

$$\exists \eta \in \mathbb{R}^q \quad \text{s.t} \quad \Phi^* \eta \in \partial J(x)$$
 (SC_x)

$$x \in \underset{u}{\operatorname{Argmin}} J(u) \text{ s.t } \Phi x = \Phi u$$

$$\Leftrightarrow \quad 0 \in \partial J(x) + \mathcal{N}_{\operatorname{Ker} \Phi}(x)$$

$$\Leftrightarrow \quad 0 \in \partial J(x) + \operatorname{Im} \Phi^*$$

 $\operatorname{Im} \Phi^* \cap \partial J(x) \neq \emptyset$

(Non-Degenerated) Source Condition

$$\exists \eta \in \mathbb{R}^q \quad \text{s.t} \quad \Phi^* \eta \in \partial J(x)$$
 (SC_x)

Non-degenerated source condition

$$\exists \eta \in \mathbb{R}^q \quad \text{s.t} \quad \Phi^* \eta \in \text{ri } \partial J(x)$$
 $(\widetilde{\mathrm{SC}}_x)$

Restricted Injectivity

$$\mathsf{Ker}\,\Phi\cap\mathcal{T}=\{0\} \qquad \qquad (\mathrm{INJ}_{\mathcal{T}})$$

Observe that if $y = \Phi x_0 + 0$ and $x_0 \in \mathcal{T}$ (known). Then,

$$x_0 = \underset{\Phi_{X=y}}{\operatorname{argmin}} J(x) \Leftrightarrow (INJ_T) \text{ holds}$$

We proved a uniqueness result based on this remark (NSP-like, not covered today easy question!)

$$\ell^2$$
-stability

$$y = \underbrace{\Phi x_0}_{=y_0} + w$$

$$x_{y,\lambda}^{\star} \in \underset{x \in \mathbb{R}^n}{\operatorname{Argmin}} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda J(x) \tag{$\mathcal{P}_{y,\lambda}$}$$

Theorem

Assume (SC_{x_0}), associated to a non-degenerate certificate η , and (INJ_T) hold. Choosing $\lambda = c \|w\|_2$, c > 0, for any minimizer $x_{\nu,\lambda}^{\star}$ of $(\mathcal{P}_{v,\lambda})$ $||x_{v,\lambda}^{\star} - x_{v_0,0^+}^{\star}||_2 \leqslant C(c,\Phi,\eta)||w||_2$

$$\|x_{y,\lambda}^{\star} - x_{y_0,0^+}^{\star}\|_2 \leqslant C(c,\Phi,\eta)\|w\|$$

$$\ell^2$$
-stability

$$y = \underbrace{\Phi x_0}_{=y_0} + w$$

$$x_{y,\lambda}^* \in \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda J(x)$$

$$(\mathcal{P}_{y,\lambda})$$

Theorem

Assume (\widehat{SC}_{x_0}) , associated to a non-degenerate certificate η , and (INJ_T) hold. Choosing $\lambda = c\|w\|_2$, c > 0, for any minimizer $x_{y,\lambda}^*$ of $(\mathcal{P}_{v,\lambda})$

$$||x_{y,\lambda}^{\star} - x_0||_2 = O(||w||_2)$$

Previous works:

[Grasmair et al. 2010]: ℓ^1

[Grasmair 2011]: $J(x_{y,\lambda}^{\star} - x_0) = O(\|w\|_2)$

[Haltmeier 2012]: analysis- ℓ^1 with a frame

ℓ^2 -stability

• $\|x_{y,\lambda}^{\star} - x_{y_0,0^+}^{\star}\|_2 \leqslant C(c,\Phi,\eta)\|w\|_2$ provides a worst case bound

ℓ^2 -stability

- $\|x_{y,\lambda}^{\star} x_{y_0,0^+}^{\star}\|_2 \leqslant C(c,\Phi,\eta)\|w\|_2$ provides a worst case bound
- ullet The use of ℓ^2 -norm is not central. Other data fidelity term can be considered

$$\ell^2$$
-stability

- $\|x_{v,\lambda}^{\star} x_{v_0,0^+}^{\star}\|_2 \leqslant C(c,\Phi,\eta)\|w\|_2$ provides a worst case bound
- ullet The use of ℓ^2 -norm is not central. Other data fidelity term can be considered
- A similar analysis can be performed for the constrained case, i.e.

$$\underset{x \in \mathbb{R}^n}{\mathsf{Argmin}} \ J(x) \quad \text{s.t.} \quad \|y - \Phi x\|_2 \leqslant \varepsilon$$

$$\ell^2$$
-stability

- $\|x_{v,\lambda}^{\star} x_{v_0,0^+}^{\star}\|_2 \leqslant C(c,\Phi,\eta)\|w\|_2$ provides a worst case bound
- ullet The use of ℓ^2 -norm is not central. Other data fidelity term can be considered
- A similar analysis can be performed for the constrained case, i.e.

$$\underset{x \in \mathbb{R}^n}{\mathsf{Argmin}} \ J(x) \quad \text{s.t.} \quad \|y - \Phi x\|_2 \leqslant \varepsilon$$

$$\ell^2$$
-stability

- $\|x_{y,\lambda}^{\star} x_{y_0,0^+}^{\star}\|_2 \leqslant C(c,\Phi,\eta)\|w\|_2$ provides a worst case bound
- ullet The use of ℓ^2 -norm is not central. Other data fidelity term can be considered
- A similar analysis can be performed for the constrained case, i.e.

Argmin
$$J(x)$$
 s.t $||y - \Phi x||_2 \leqslant \varepsilon$

Connection to compressed sensing

Proposition

Assume
$$J = \|\cdot\|_1$$
, $\Phi_{ij} \sim_{iid} \mathcal{N}(0,1)$ and $s = \|x_0\|_0$.
If $q > 2s \log(n/s) + 7/5s$, then (\widetilde{SC}_{x_0}) and $(INJ_{\mathcal{T}})$ hold.

We need to use our main assumption

 x_0 lives in a low-dimensional submanifold of \mathbb{R}^n

Part II: Definition of a Model

In order to solve

$$y = \Phi x_0 + w$$

we consider for a convex function J, the optimization

$$x_{y,\lambda}^{\star} \in \underset{x \in \mathbb{R}^n}{\operatorname{Argmin}} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda J(x)$$
 $(\mathcal{P}_{y,\lambda})$

Goal

Connect a convex function J to a signal model (geometric / combinatorial) $\mathcal M$


```
Type Sparse signal Complexity measure \|\cdot\|_0 = |\operatorname{supp}(\cdot)| Natural model: \{z: \operatorname{supp}(z) = \operatorname{supp}(x)\}
```

Convex candidate: $\|\cdot\|_1$

Type Block-sparse signal

Complexity measure $|\operatorname{supp}_{\mathcal{B}}(\cdot)|$

Natural model: $\{z : \operatorname{supp}_{\mathcal{B}}(z) = \operatorname{supp}_{\mathcal{B}}(x)\}$

Convex candidate: $\|\cdot\|_{\mathcal{B}}$

Type Piecewise constant signal

Complexity measure $\|\nabla\cdot\|_0=|\operatorname{supp}(\nabla\cdot)|$

Natural model: $\{z : \operatorname{supp}(\nabla z) = \operatorname{supp}(\nabla x)\}$

Convex candidate: $\|\nabla \cdot\|_1$

```
\begin{pmatrix}1&1&2&3&4&5\\1&1&2&3&4&5\\1&3&2&2&4&2\\1&1&2&3&4&5\\1&4&2&2&4&1\\1&1&2&3&4&5\\1&1&2&3&4&5\end{pmatrix}
```

```
Type Low rank matrix
```

Complexity measure $\|\sigma(\cdot)\|_0 = \operatorname{rank}(\cdot)$

Natural model:
$$\{z : rank(z) = rank(x)\}$$

Convex candidate: $\|\cdot\|_*$

Back to ℓ^1

Back to ℓ^1

Back to ℓ^1

- 1. $(\|\cdot\|_1)_{|\mathcal{M}}$ is affine around x
- 2. For every $h \in \mathcal{M}^{\perp}$, $t \mapsto \|x + th\|_1$ is not differentiable at 0
- 3. $(\partial \|\cdot\|_1)_{|\mathcal{M}}$ is constant around x relatively to \mathcal{M}

- 1. $(\|\cdot\|_1)_{|\mathcal{M}}$ is C^2 around x
- 2. For every $h \in \mathcal{M}^{\perp}$, $t \mapsto \|x + th\|_1$ is not differentiable at 0
- 3. $(\partial \|\cdot\|_1)_{|\mathcal{M}}$ is continuous around x relatively to \mathcal{M}

J is said to be partly smooth relatively to a C^2 -manifold $\mathcal M$ at x if:

- 1. $J_{|\mathcal{M}}$ is C^2 around x
- 2. For every $h \in (\mathcal{T}_x \mathcal{M})^{\perp}$, $t \mapsto ||x + th||_1$ is not differentiable at 0
- 3. $(\partial J)_{|\mathcal{M}}$ is continuous around x relatively to \mathcal{M}

J is said to be partly smooth relatively to a C^2 -manifold $\mathcal M$ at x if:

- 1. $J_{|\mathcal{M}}$ is C^2 around x
- 2. For every $h \in (\mathcal{T}_x \mathcal{M})^{\perp}$, $t \mapsto ||x + th||_1$ is not differentiable at 0
- 3. $(\partial J)_{|\mathcal{M}}$ is continuous around x relatively to \mathcal{M}

Notation: $J \in \mathrm{PS}_{\mathsf{x}}(\mathcal{M})$

Introduced by [Lewis 2002] following [Lemaréchal et al. 2000]

Proposition (Locally uniquely defined)

If
$$J \in \mathrm{PS}_x(\mathcal{M})$$
 and $J \in \mathrm{PS}_x(\mathcal{M}')$ then

$$\mathcal{M} \equiv^{\times} \mathcal{M}'$$

Partial Smoothness

J is said to be partly smooth relatively to a C^2 -manifold $\mathcal M$ at x if:

- 1. $J_{|\mathcal{M}}$ is C^2 around x
- 2. $\mathcal{T}_{x}\mathcal{M} = \mathcal{T}_{x}$ (= par $\partial J(x)$)
- 3. $(\partial J)_{|\mathcal{M}}$ is continuous around x relatively to \mathcal{M}

Notation: $J \in \mathrm{PS}_{\mathsf{x}}(\mathcal{M})$

Introduced by [Lewis 2002] following [Lemaréchal et al. 2000]

Proposition (Locally uniquely defined)

If
$$J \in \mathrm{PS}_x(\mathcal{M})$$
 and $J \in \mathrm{PS}_x(\mathcal{M}')$ then

$$\mathcal{M} \equiv^{\times} \mathcal{M}'$$

Model Manifold

J	M	
· 1	$\{z: \operatorname{supp}(z) \subseteq \operatorname{supp}(x)\}$	same support
$\ \cdot\ _{\mathcal{B}}$	$\{z: \operatorname{supp}_{\mathcal{B}}(z) \subseteq \operatorname{supp}_{\mathcal{B}}(x)\}$	same block-support
$\ abla\cdot\ _1$	$\{z: \operatorname{supp}(\nabla z) \subseteq \operatorname{supp}(\nabla x)\}$	same jump set
• *	$\{z: \operatorname{rank} z = \operatorname{rank} x\}$	same rank
$\ \cdot\ _{\infty}$	$\{z: z_I \in \mathbb{R} \operatorname{sign}(x_I)\}$	same saturation ¹

 $^{^{1}}I = \{i : |x_{i}| = ||x||_{\infty}\}$

Calculus Rules

under mild transversality condition:

Proposition (Lewis 2002, Daniilidis et al. 2014)

- If J is C^2 around x then $J \in \mathrm{PS}_x(\mathbb{R}^n)$
- If $J \in \mathrm{PS}_{\mathsf{x}}(\mathcal{M})$ and $J' \in \mathrm{PS}_{\mathsf{x}}(\mathcal{M}')$ then

$$J + J' \in \mathrm{PS}_{\mathsf{x}}(\mathcal{M} \cap \mathcal{M}')$$

• If A is a linear operator and $J \in \mathrm{PS}_{\mathcal{A}x}(\mathcal{M}^0)$ then

$$J \circ A \in \mathrm{PS}_{\mathsf{x}}(\mathcal{M})$$
 where $\mathcal{M} = \{z : Au \in \mathcal{M}^0\}$

Spectral lift

Fun Example

$$J(x) = \max(0, \|x\| - 1)$$

Part III: Model Stability

In order to solve

$$y = \Phi x_0 + w$$

we consider for a partly smooth function J, the optimization

$$x_{y,\lambda}^{\star} \in \underset{x \in \mathbb{R}^n}{\operatorname{Argmin}} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda J(x)$$
 ($\mathcal{P}_{y,\lambda}$)

Goal

How to assess that $\mathcal{M}(x_{v,\lambda}^\star)=\mathcal{M}(x_0)$ and also $\|x_{y,\lambda}^\star-x_0\|$ small enough ?

(Non-Degenerated) Source Condition

$$\exists \eta \in \mathbb{R}^q \quad \text{s.t.} \quad \Phi^* \eta \in \partial J(x) \qquad (SC_x)$$

$$\partial J(x) \qquad \qquad x \in \operatorname{Argmin} J(u) \text{ s.t.} \Phi x = \Phi u$$

$$\downarrow x \qquad \qquad \Leftrightarrow \quad 0 \in \partial J(x) + \mathcal{N}_{\mathsf{Ker} \Phi}(x)$$

Non-degenerated source condition

Ker Φ

$$\boxed{\exists \eta \in \mathbb{R}^q \quad \text{s.t} \quad \Phi^* \eta \in \text{ri } \partial J(x)} \tag{\widetilde{SC}_x}$$

 $\Leftrightarrow 0 \in \partial J(x) + \operatorname{Im} \Phi^*$ $\Leftrightarrow \operatorname{Im} \Phi^* \cap \partial J(x) \neq \emptyset$

(Non-Degenerated) Source Condition

$$\exists \eta \in \mathbb{R}^q \quad \text{s.t.} \quad \Phi^* \eta \in \partial J(x) \qquad (SC_x)$$

$$\partial J(x) \qquad \qquad x \in \operatorname{Argmin} J(u) \text{ s.t.} \Phi x = \Phi u$$

$$\downarrow x \qquad \qquad \Leftrightarrow \quad 0 \in \partial J(x) + \mathcal{N}_{\mathsf{Ker} \Phi}(x)$$

Non-degenerated source condition

Ker Φ

$$\boxed{\exists \eta \in \mathbb{R}^q \quad \text{s.t} \quad \Phi^* \eta \in \text{ri } \partial J(x)} \tag{\widetilde{SC}_x}$$

 $\Leftrightarrow 0 \in \partial J(x) + \operatorname{Im} \Phi^*$ $\Leftrightarrow \operatorname{Im} \Phi^* \cap \partial J(x) \neq \emptyset$

(Non-Degenerated) Source Condition

$$\exists \eta \in \mathbb{R}^q \quad \text{s.t} \quad \Phi^* \eta \in \partial J(x)$$
 (SC_x)

Non-degenerated source condition

$$\exists \eta \in \mathbb{R}^q \quad \text{s.t.} \quad \Phi^* \eta \in \text{ri } \partial J(x)$$
 (\widetilde{SC}_x)

How to exhibit a certificate $\eta \in \mathbb{R}^q$ s.t $\Phi^* \eta \in \operatorname{ri} \partial J(x)$? Could be a hard problem.

How to exhibit a certificate $\eta \in \mathbb{R}^q$ s.t $\Phi^* \eta \in \operatorname{ri} \partial J(x)$? Could be a hard problem.

Minimal-norm certificate

$$\eta_0 = \underset{\eta \in \mathbb{R}^q}{\operatorname{argmin}} \|\eta\|_2 \text{ s.t. } \Phi^* \eta \in \partial J(x)$$

How to exhibit a certificate $\eta \in \mathbb{R}^q$ s.t $\Phi^* \eta \in \text{ri } \partial J(x)$?

Could be a hard problem.

Minimal-norm certificate

$$\eta_0 = \underset{\eta \in \mathbb{R}^q}{\operatorname{argmin}} \|\eta\|_2 \text{ s.t. } \Phi^* \eta \in \partial J(x)$$

Linearized pre-certificate ($T = T_x$)

$$\eta_F = \underset{\subset}{\operatorname{argmin}} \|\eta\|_2 \text{ s.t. } \Phi^* \eta \in \operatorname{aff} \partial J(x)$$

How to exhibit a certificate $\eta \in \mathbb{R}^q$ s.t $\Phi^* \eta \in \operatorname{ri} \partial J(x)$?

Could be a hard problem.

Minimal-norm certificate

$$\eta_0 = \underset{\eta \in \mathbb{R}^q}{\operatorname{argmin}} \ \|\eta\|_2 \ \text{s.t.} \ \Phi^* \eta \in \partial J(x)$$

Linearized pre-certificate ($T = T_x$)

$$\eta_F = \underset{\eta \in \mathbb{R}^q}{\operatorname{argmin}} \|\eta\|_2 \text{ s.t. } \Phi^* \eta \in \operatorname{aff} \partial J(x)$$

Proposition

If (INJ_T) holds, then 1. η_F is well-defined

- 2. $\eta_F = (\Phi \Pi_T)^{+,*} e_x$
- 3. $\Phi^* \eta_F \in \operatorname{ri} \partial J(x) \Rightarrow \eta_0 = \eta_F$
- 4. $\Phi^*\eta_F \in \operatorname{ri} \partial J(x) \Rightarrow x$ unique solution of $(\mathcal{P}_{y_0,0^+})$

Model Stability

$$x_{y,\lambda}^{\star} \in \underset{x \in \mathbb{R}^n}{\operatorname{Argmin}} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda J(x)$$
 $(\mathcal{P}_{y,\lambda})$

Theorem

Assume that $J \in \mathrm{PS}_{x_0}(\mathcal{M})$, $(\mathrm{INJ}_{\mathcal{T}_{x_0}})$ and $\Phi^*\eta_F \in \mathrm{ri}\,\partial J(x_0)$ hold. Then, there exist (C,C') such that if $\|w\|_2 \leqslant C$ and $\lambda = C'\|w\|_2$, the solution $x_{y,\lambda}^*$ of $(\mathcal{P}_{y,\lambda})$ is unique,

$$x_{y,\lambda}^{\star} \in \mathcal{M}$$
 and $\|x_{y,\lambda}^{\star} - x_0\|_2 = O(\|w\|_2)$

Model Stability

$$x_{y,\lambda}^{\star} \in \underset{x \in \mathbb{R}^n}{\operatorname{Argmin}} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda J(x)$$
 $(\mathcal{P}_{y,\lambda})$

Theorem

Assume that $J \in \mathrm{PS}_{x_0}(\mathcal{M})$, $(\mathrm{INJ}_{T_{x_0}})$ and $\Phi^*\eta_F \in \mathrm{ri}\,\partial J(x_0)$ hold. Then, there exist (C,C') such that if $\|w\|_2 \leqslant C$ and $\lambda = C'\|w\|_2$, the solution $x_{y,\lambda}^*$ of $(\mathcal{P}_{y,\lambda})$ is unique,

$$x_{y,\lambda}^{\star} \in \mathcal{M}$$
 and $\|x_{y,\lambda}^{\star} - x_0\|_2 = O(\|w\|_2)$

Previous works: [Fuchs 2004] ℓ^1 , [Bach 2008] $\ell^1 - \ell^2$, [V. et al. 2012] analysis- ℓ^1

For most
$$J$$
, $x_{y,\lambda}^{\star} \in \mathcal{M} \Rightarrow \mathcal{M}(x_{y,\lambda}^{\star}) = \mathcal{M}$
Almost sharp, i.e. $\Phi^* \eta_F \notin \partial J(x_0) \Rightarrow$ no model stability

Gaussian Measurements

Previous theorem: two non trivial hypotheses (INJ $_{\mathcal{T}_{x_0}}$) and $\Phi^*\eta_F\in \operatorname{ri}\partial J(x_0)$

Proposition

Suppose $\Phi_{ii} \sim_{iid} \mathcal{N}(0,1)$. If, either

- 1. $J = \|\cdot\|_1$, $s = \|x_0\|_0$ and $q > 2\beta s \log n + s$ for some $\beta > 1$
- 2. $J = \|\cdot\|_*$, $r = \text{rank}(x_0)$ and $q > \beta r(6\sqrt{n} 5r)$ for some $\beta > 1$ then $(\text{INJ}_{T_{x_0}})$ and $\Phi^*\eta_F \in \text{ri }\partial J(x_0)$

 ℓ^2 -stability: $2s \log n/s$ measures VS model stability: $2s \log n$

Part IV: Algorithmic Implication

In order to solve

$$y = \Phi x_0 + w$$

we consider for a partly smooth function J, the optimization

$$x_{y,\lambda}^{\star} \in \underset{x \in \mathbb{R}^n}{\operatorname{Argmin}} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda J(x)$$
 ($\mathcal{P}_{y,\lambda}$)

Goal

How to assess that an algorithm provides the good model in finite time?

Algorithm and Non-smoothness

$$x^* \in \underset{x \in \mathbb{R}^n}{\operatorname{Argmin}} \mathcal{E}(x) = F(x) + \lambda J(x)$$

Gradient descent

$$x^{(k+1)} = x^{(k)} - \rho \nabla \mathcal{E}(x^{(k)})$$

Algorithm and Non-smoothness

$$x^* \in \underset{x \in \mathbb{R}^n}{\operatorname{Argmin}} \ \mathcal{E}(x) = F(x) + \lambda J(x)$$

Gradient descent

$$x^{(k+1)} = x^{(k)} - \rho \nabla \mathcal{E}(x^{(k)})$$

But J is not smooth. Several strategies:

- Smoothing of *J*
- Interior point method
- Subgradient descent
- Proximal methods

Algorithm and Non-smoothness

$$x^* \in \underset{x \in \mathbb{R}^n}{\mathsf{Argmin}} \ \mathcal{E}(x) = F(x) + \lambda J(x)$$

Gradient descent

$$x^{(k+1)} = x^{(k)} - \rho \nabla \mathcal{E}(x^{(k)})$$

But J is not smooth. Several strategies:

- Smoothing of *J*
- Interior point method
- Subgradient descent
- Proximal methods

Life is Smooth: Moreau-Yosida

Infimal convolution

$$(f\Box g)(x) = \inf_{v} f(x) + g(v - x)$$

Moreau-Yosida regularization

$$Mor[f] = f \square (1/2) \| \cdot \|^2$$

Life is Smooth: Moreau-Yosida

Infimal convolution

$$(f\Box g)(x) = \inf_{v} f(x) + g(v - x)$$

Moreau-Yosida regularization

$$Mor[f] = f \square (1/2) \| \cdot \|^2$$

For any convex function f (not smooth, not full-domain)

- dom $Mor[f] = \mathbb{R}^n$
- Mor[f] is continuously differentiable
- $\operatorname{argmin} \operatorname{Mor}[f] = \operatorname{argmin} f$

Proximity Operator

Proximity operator ≡ unique argument of Moreau infimum

$$\mathsf{Prox}_f(v) = \operatorname*{argmin}_{x \in \mathbb{R}^n} f(x) + \frac{1}{2} \|x - v\|_2^2$$

Smooth interpretation: implicit gradient step

$$Prox_f(x) = x - \nabla Mor[f](x)$$

Proximity ≈ Generalized Projection

Indicator function

$$\iota_{\mathcal{C}}(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ +\infty & \text{otherwise.} \end{cases}$$

Proposition (Proximity

Projection)

If C is a convex set, then

$$\mathsf{Prox}_{\iota_{\mathcal{C}}} = \Pi_{\mathcal{C}}$$

$$\operatorname{Prox}_{\iota_{\mathcal{C}}}(v) = \underset{x}{\operatorname{argmin}} \operatorname{Prox}_{\iota_{\mathcal{C}}}(v) + \frac{1}{2} \|x - v\|^{2}$$
$$= \underset{x \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{2} \|x - v\|^{2} = \Pi_{\mathcal{C}}(v)$$

Subdifferential and Proximity Operator

Proposition

$$p = \mathsf{Prox}_f(v) \Leftrightarrow v - p \in \partial f(p)$$

Resolvant of the subdifferential (as a notation)

$$\mathsf{Prox}_f(v) = (\mathrm{Id} + \partial f)^{-1}(v)$$

Theorem

$$Fix Prox_f = argmin f$$

Proximal Fixed Point

Firmly nonexpansive

$$\|\operatorname{Prox}_{\mathcal{E}}(x) - \operatorname{Prox}_{\mathcal{E}}(y)\|^2 + \|(\operatorname{Id} - \operatorname{Prox}_{\mathcal{E}})(x) - (\operatorname{Id} - \operatorname{Prox}_{\mathcal{E}})(y)\|^2 \leq \|x - y\|^2$$

An Idea: Splitting

$$\min_{x} \mathcal{E}(x) = \underbrace{\frac{1}{2} \|y - \Phi x\|^{2}}_{F} + \underbrace{\lambda \|x\|_{1}}_{\lambda J}$$

$$\mathcal{E}$$
 not smooth \odot / $\mathsf{Prox}_{\mathcal{E}}$ hard to compute \odot

An Idea: Splitting

$$\min_{x} \mathcal{E}(x) = \underbrace{\frac{1}{2} \|y - \Phi x\|^{2}}_{F} + \underbrace{\lambda \|x\|_{1}}_{\lambda J}$$

 ${\mathcal E}$ not smooth \circledcirc / $\mathsf{Prox}_{\mathcal E}$ hard to compute \circledcirc But:

- F is smooth
- $Prox_{\lambda J}$ is easy to compute

$$x^* \in \operatorname{argmin} f + g$$

 $0 \in \nabla F(x^*) + \lambda \partial J(x^*)$

$$x^* \in \operatorname{argmin} f + g$$
$$0 \in \nabla F(x^*) + \lambda \partial J(x^*)$$
$$0 \in \rho \nabla F(x^*) + \rho \lambda \partial J(x^*)$$

$$x^* \in \operatorname{argmin} f + g$$

$$0 \in \nabla F(x^*) + \lambda \partial J(x^*)$$

$$0 \in \rho \nabla F(x^*) + \rho \lambda \partial J(x^*)$$

$$0 \in \rho \nabla F(x^*) - x^* + x^* + \rho \lambda \partial J(x^*)$$

$$x^* \in \operatorname{argmin} f + g$$

$$0 \in \nabla F(x^*) + \lambda \partial J(x^*)$$

$$0 \in \rho \nabla F(x^*) + \rho \lambda \partial J(x^*)$$

$$0 \in \rho \nabla F(x^*) - x^* + x^* + \rho \lambda \partial J(x^*)$$

$$(\operatorname{Id} - \rho \nabla F)(x^*) \in (\operatorname{Id} + \rho \lambda \partial J)(x^*)$$

$$x^{\star} \in \operatorname{argmin} f + g$$

$$0 \in \nabla F(x^*) + \lambda \partial J(x^*)$$

$$0 \in \nabla F(x^*) + \lambda \partial J(x^*)$$

$$0 \in \rho \nabla F(x^*) + \rho \lambda \partial J(x^*)$$

$$0 \in \rho \nabla F(x^*) + \rho \lambda \partial J(x^*)$$

$$0 \in \rho \nabla F(x^*) + \rho \lambda \partial J(x^*)$$
$$0 \in \rho \nabla F(x^*) - x^* + x^* + a$$

$$0 \in \rho \nabla F(x^*) - x^* + x^* + \rho$$

$$0 \in \rho \nabla F(x^*) - x^* + x^* + \rho \lambda \partial J(x^*)$$
$$(\mathrm{Id} - \rho \nabla F)(x^*) \in (\mathrm{Id} + \rho \lambda \partial J)(x^*)$$

$$F(x^*) \in (\mathrm{Id} + \rho \lambda \partial J)(x^*)$$

 $x^* = (\mathrm{Id} + \rho \lambda \partial J)^{-1} (\mathrm{Id} - \rho \nabla F)(x^*)$

$$x^* \in \operatorname{argmin} f + g$$

$$x^{\wedge} \in \operatorname{argmin} f + g$$

$$0 \in \nabla F(x^{*}) + \lambda$$

$$0 \in o \nabla F(x^{*}) + \beta$$

$$0 \in \nabla F(x^*) + \lambda \partial J(x^*)$$

$$0 \in \rho \nabla F(x^*) + \rho \lambda \partial J(x^*)$$

$$0 \in \rho \nabla F(x^*) + \rho \lambda \partial J(x^*)$$
$$0 \in \rho \nabla F(x^*) - x^* + x^* + \rho \lambda \partial J(x^*)$$

$$0 \in \rho \nabla F(x^*) - x^* + x^* + \rho \lambda \partial J(x^*)$$

$$0 \in \rho \nabla F(x^*) - x^* + x^* + \rho \lambda \partial.$$

$$(\mathrm{Id} - \rho \nabla F)(x^*) \in (\mathrm{Id} + \rho \lambda \partial J)(x^*)$$

 $x^* = \text{Prox}_{\rho \lambda J}(x^* - \rho \nabla F(x^*))$

 $x^* = (\mathrm{Id} + \rho \lambda \partial J)^{-1} (\mathrm{Id} - \rho \nabla F)(x^*)$

$$x^* \in \operatorname{argmin} f + g$$

$$0 \in \nabla F(x^*) + \lambda \partial J(x^*)$$

$$0 \in \rho \nabla F(x^*) + \rho \lambda \partial J(x^*)$$

$$0 \in \rho \nabla F(x^*) - x^* + x^* + \rho \lambda \partial J(x^*)$$

$$(\operatorname{Id} - \rho \nabla F)(x^*) \in (\operatorname{Id} + \rho \lambda \partial J)(x^*)$$

$$x^* = (\operatorname{Id} + \rho \lambda \partial J)^{-1}(\operatorname{Id} - \rho \nabla F)(x^*)$$

$$x^* = \operatorname{Prox}_{\rho \lambda J}(x^* - \rho \nabla F(x^*))$$

Proposition

$$Tx = \operatorname{Prox}_{\rho\lambda J}(x - \rho \nabla F(x))$$

Fix $T = \operatorname{argmin} F + \lambda J$

Algorithm: Forward-Backward

$$x^{(n+1)} = \underbrace{\mathsf{Prox}_{\rho\lambda J}}_{\mathsf{backward}} \underbrace{(x^{(n)} - \rho \nabla F(x^{(n)}))}_{\mathsf{forward}}$$

Special cases

• Gradient descent: J=0

$$x^{(n+1)} = x^{(n)} - \rho \nabla F(x^{(n)})$$

Algorithm: Forward-Backward

$$x^{(n+1)} = \underbrace{\mathsf{Prox}_{\rho\lambda J}}_{\mathsf{backward}} \underbrace{(x^{(n)} - \rho \nabla F(x^{(n)}))}_{\mathsf{forward}}$$

Special cases

• Gradient descent: J = 0

$$x^{(n+1)} = x^{(n)} - \rho \nabla F(x^{(n)})$$

• Proximal point: F = 0

$$x^{(n+1)} = \mathsf{Prox}_{\rho\lambda J}(x^{(n)})$$

Algorithm: Forward-Backward

$$x^{(n+1)} = \underbrace{\mathsf{Prox}_{\rho\lambda J}}_{\mathsf{backward}} \underbrace{(x^{(n)} - \rho \nabla F(x^{(n)}))}_{\mathsf{forward}}$$

Special cases

• Gradient descent: J = 0

$$x^{(n+1)} = x^{(n)} - \rho \nabla F(x^{(n)})$$

• Proximal point: F = 0

$$x^{(n+1)} = \mathsf{Prox}_{\rho\lambda J}(x^{(n)})$$

• Projected gradient: $J = \iota_{\mathcal{C}}$

$$x^{(n+1)} = \Pi_{\mathcal{C}}(x^{(n)} - \rho \nabla F(x^{(n)}))$$

Model Identifiability

$$x^{(k+1)} = \mathsf{Prox}_{\rho\lambda J}(x^{(k)} - \rho \nabla F(x^{(k)}))$$

Theorem

Assume that $J \in \mathrm{PS}_{x_0}(\mathcal{M})$, $(\mathrm{INJ}_{T_{x_0}})$, $\Phi^*\eta_F \in \mathrm{ri}\,\partial J(x_0)$ hold and $0 < \rho < 2/\|\Phi\|$. Then, there exist (C,C') such that if $\|w\|_2 \leqslant C$ and $\lambda = C'\|w\|_2$, there exists k_0 such that for all $k \geqslant k_0$

$$x^{(k)} \in \mathcal{M}$$
 and $x^{(k)} \to x_0$.

Model Identifiability

$$x^{(k+1)} = \mathsf{Prox}_{\rho\lambda J}(x^{(k)} - \rho \nabla F(x^{(k)}))$$

Theorem

Assume that $J \in \mathrm{PS}_{\mathsf{x}_0}(\mathcal{M})$, $(\mathrm{INJ}_{T_{\mathsf{x}_0}})$, $\Phi^*\eta_F \in \mathrm{ri}\,\partial J(\mathsf{x}_0)$ hold and $0 < \rho < 2/\|\Phi\|$. Then, there exist (C,C') such that if $\|w\|_2 \leqslant C$ and $\lambda = C'\|w\|_2$, there exists k_0 such that for all $k \geqslant k_0$

$$x^{(k)} \in \mathcal{M}$$
 and $x^{(k)} \to x_0$.

Not a rate of convergence result but a finite time result

Take Away

- Unified analysis of recovery guarantees for regularized linear inverse problems
- Partial smoothness provides a nice framework to work with

Take Away

- Unified analysis of recovery guarantees for regularized linear inverse problems
- Partial smoothness provides a nice framework to work with

Several (semi-) open problems:

- How to define a functional J from a set of model $(\mathcal{M})_{\mathcal{M} \in \mathbb{M}}$?
- What happens for J not convex?
- What occurs at the boundary?
- In infinite dimension ?

Take Away

- Unified analysis of recovery guarantees for regularized linear inverse problems
- Partial smoothness provides a nice framework to work with

Several (semi-) open problems:

- How to define a functional J from a set of model $(\mathcal{M})_{\mathcal{M} \in \mathbb{M}}$?
- What happens for J not convex?
- What occurs at the boundary?
- In infinite dimension ?

Thanks for your attention!

More?

- S. V., G. Peyré, and J. Fadili
 Low Complexity Regularization of Linear Inverse Problems
 Sampling Theory, a Renaissance, 2015
 → review chapter (cover the same spectrum of topics)
- S. V., C. Deledalle, G. Peyré, J. Fadili, and C. Dossal The Degrees of Freedom of Partly Smooth Regularizers Annals of the Institute of Statistical Mathematics, 2016 → risk estimation and sensitivity
- S. V., G. Peyré, and J. Fadili
 Model Consistency of Partly Smooth Regularizers
 preprint (HAL/arxiv), 2014
 → model stability & identifiability
- J. Fadili, G. Peyré, S. Vaiter, C. Deledalle, and J. Salmon Stable Recovery with Analysis Decomposable Priors Proc. SampTA, 2013 $\rightarrow \ell^2$ -stability

Part V: Parameter Selection

In order to solve

$$y = \Phi x_0 + w$$

we consider for a partly smooth function J, the optimization

$$x_{y,\lambda}^{\star} \in \underset{x \in \mathbb{R}^n}{\operatorname{Argmin}} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda J(x)$$
 ($\mathcal{P}_{y,\lambda}$)

Goal

How to choose an adequate λ ?

Influence of $\boldsymbol{\lambda}$

Influence of $\boldsymbol{\lambda}$

Influence of $\boldsymbol{\lambda}$

Influence of λ

Let's be Random

Until now, we considered deterministic observations

$$y = \Phi x_0 + w$$

Let's add a noise model, for instance a Gaussian one

$$Y = \Phi x_0 + W$$
 where $W \sim \mathcal{N}(0, \sigma^2 \mathrm{Id}_q)$

Risk Estimation

$$x_{y,\lambda}^{\star} \in \underset{x \in \mathbb{R}^n}{\operatorname{Argmin}} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda J(x)$$
 $(\mathcal{P}_{y,\lambda})$

Risk Estimation

$$x_{\lambda}^{\star}(y) \in \operatorname*{Argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda J(x)$$
 $(\mathcal{P}_{y,\lambda})$

Prediction risk

$$R_{\lambda}(Y) = \mathbb{E}_{W} \| \Phi x_{\lambda}^{\star}(Y) - \Phi x_{0} \|_{2}^{2}$$

Our objective is to minimize this risk, i.e. finding

$$\lambda^*(Y) \in \underset{\lambda \in \mathbb{R}_+^*}{\mathsf{Argmin}} \ R_{\lambda}(Y)$$

Issue

In practice, x_0 is not known . . .

We are going to define an estimator of $R_{\lambda}(Y)$

Degrees of Freedom and Stein's Lemma

Simple Example

$$x_{\lambda}^{\star}(y) = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \ \frac{1}{2} \|y - \Phi x\|_2^2 + \lambda J(x) \tag{$\mathcal{P}_{y,\lambda}$}$$

If J is smooth, first-order condition:

$$\Phi^*(\Phi x_{\lambda}^{\star}(y) - y) + \lambda \nabla J(x_{\lambda}^{\star}(y)) = 0$$

If $\Gamma = \Phi^*\Phi + \lambda D^2 J(x_{\lambda}^*(y))$ is invertible, implicit function theorem gives

$$\mathrm{D} x_{\lambda}^{\star}(y) = \Gamma^{-1} \Phi^{*}$$