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This talk:
e finite dimensional setting — xg € R", y € R
e No (explicit) assumption on the distribution of the noise

e O is the linear measurement/degradation operator
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Summary: the inverse problem of recovering xp from y is ill-posed
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Regularization

As we just saw (in a different language), the optimization problem

argmin |y — &x|3
X
leads to an unstable solution.
Could we cast an another optimization scheme with better

properties ?
— idea of regularization.
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Regularization

Argmin |y — ¢X||% + A x|1
X

But wait, xg is a familly of spikes, why not just count them?
— sparsity
Issues: x +— | supp(x)| is non-differentiable, non-convex
Two alternatives:

e Use a greedy solver

e Embrace the power of convex relaxation
The connection between |supp (-)| and | - |1 is known as
compressed sensing at Aachen
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Main Assumption

xp lives in a low-dimensional submanifold of R”

e.g. xp is sparse, block-sparse, piecewise constant, piecewise affine,
low-rank, etc.

Our goal: encompass all these priors under a single (convex)
umbrella.
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+E()

PE(t) = {n: E(t') > £(t) + (n. ¥ — 1)}



Convex Analysis 101: Euler Equation

& convex 4+ smooth

0 = VE(x*) <= x* € Argmin &£(x)

& convex
0 € 9E(x*) < x* € Argmin &E(x)



Part |: ¢?-stability

In order to solve
y=®&xg+w

we consider for a convex function J, the optimization

1
Xt € Argmin [y — Ox[ + AJ(x) (Py )
x€eR"

Goal

Provide an upper bound of the estimation error |x} \ — xof
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Notations
S =parC

aff C

€x

C = 0J(x): subdifferential
of J at x

aff(C): affine hull of C

ri C: relative interior of C
par(C): subspace parallel

to aff(C)

Sy = pardJ(x), Ty = SXL, ey = N1 (0J(x))
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(Non-Degenerated) Source Condition

dneRI st d'nedl(x) (SCx)
O
ri 0J(x) _
x € Argmin J(u) s.t dx = du
o & 0€dJ(x) + Nero(x)
. < 0€9J(x)+ Imo*
o) & Imd NaJ(x)#0

Ker ®

Non-degenerated source condition

IneRT st d*neridd(x) ‘ (SCx)




Restricted Injectivity

(Ker®n T = {0} (INJ7)

Observe that if y = ®xg+ 0 and xop € T (known). Then,

xo = argmin J(x) < (INJ7) holds
dx=y

We proved a uniqueness result based on this remark (NSP-like, not
COVered today easy question!)
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(?-stability

y = &xg +w
~—~
=Yo
* . 1 2
Xy » € Argmin EHY — &x|3 + AJ(x) (Py.2)
xeRn

Theorem

Assume (Sféxo), associated to a non-degenerate certificate n, and
(INJ7) hold. Choosing A = c|w/|2, ¢ > 0, for any minimizer x;
of (Pyx)

75 = xll2 = O(wl2)

Previous works:
[Grasmair et al. 2010]: /!
[Grasmair 2011]: J(x} , — x0) = O(|w|?2)
[Haltmeier 2012]: analysis-¢* with a frame
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(?-stability

o [x5\ = x5 o+ l2 < C(c, ®,m)|wl2 provides a worst case bound

e The use of />-norm is not central. Other data fidelity term can
be considered

e A similar analysis can be performed for the constrained case,
i.e.

Argmin J(x) st |y —®x|2 <e
xERN

Connection to compressed sensing
Proposition

Assume J = | - |1, ®jj ~iig N(0,1) and s = |xo|o.

If g > 2slog(n/s) + 7/5s, then (SCy,) and (INJt) hold.
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We need to use our main assumption

xo lives in a low-dimensional submanifold of R”



Part II: Definition of a Model

In order to solve
y=®&xg+w

we consider for a convex function J, the optimization
* 1 2
Xy € Argmin EHY — &x|3 + AJ(x) (Py.2)
x€ERM

Goal

Connect a convex function J to a signal model (geometric /
combinatorial) M
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Complexity measure | - |o = | supp(-)]
Natural model: ~ {z: supp(z) = supp(x)}
Convex candidate: | - |1



Some Priors

Type
Complexity measure
Natural model:

Convex candidate:

I "
i y
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Block-sparse signal

| suppg(-)|

{z : suppg(z) = suppp(x)}
|15



Some Priors
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Type Piecewise constant signal
Complexity measure |V - |o = |supp(V")|
Natural model: ~ {z: supp(Vz) = supp(Vx)}
Convex candidate: |V - |1



Some Priors
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Type Low rank matrix
Complexity measure |o(-)]o = rank(+)
Natural model:  {z: rank(z) = rank(x)}

Convex candidate: | - |«
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Partial Smoothness

J is said to be partly smooth relatively to a C>-manifold M at x if:
L oJpmis C? around x
2. TM=T, (=pardd(x))
3. (0J) s is continuous around x relatively to M

Notation: J € PS,(M)
Introduced by [Lewis 2002] following [Lemaréchal et al. 2000]

Proposition (Locally uniquely defined)
If J € PSx(M) and J € PSy(M’) then

M=M



Model Manifold

| -1 | {z: supp(z) € supp(x)} same support

| -Is | {z: suppp(z) C suppg(x)} | same block-support

IV -1 | {z: supp(Vz) C supp(Vx)} | same jump set

|« | {z: rankz = rank x} same rank

|loo | {z: z1 € Rsign(x;)} same saturation!

U={i:|x|=|x|e}



Calculus Rules

under mild transversality condition:




Fun Example




Part I1l: Model Stability

In order to solve
y=®&xg+w

we consider for a partly smooth function J, the optimization

1
Xt € Argmin [y — Ox[ + AJ(x) (Py )
x€eR"

Goal

How to assess that M(X;A) = M(XO) and also "X;,A — xo|| small enough ?
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(Non-Degenerated) Source Condition

dneRI st d'nedl(x) (SCx)
O
ri 0J(x) _
x € Argmin J(u) s.t dx = du
o & 0€dJ(x) + Nero(x)
. < 0€9J(x)+ Imo*
o) & Imd NaJ(x)#0

Ker ®

Non-degenerated source condition

I eRY st d*neridd(x) ‘ (SCx)
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Minimal Norm (Pre-)Certificate

How to exhibit a certificate n € R9 s.t ®*n € ridJ(x)?
Could be a hard problem.
Minimal-norm certificate

no = argmin |n)2 s.t. ®*n € 9J(x)
neRra

Linearized pre-certificate (T = Ty)

nrF = argmin |n|2 s.t. ®*n € aff 9J(x)
neRd

Proposition
If (INJT) holds, then
1. ng is well-defined
2. np = (PMN7) e,
3. ®*np €ridJ(x) = no =nF
4. ®*ng € ridJ(x) = x unique solution of (Py, o+)
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Model Stability

1
Xy € A;%gﬂ'“ 5”)/ — Ox[3 + AJ(x) (Py.2)

Theorem

Assume that J € PSy,(M), (INJT, ) and ®*ng € ridJ(xo) hold.
Then, there exist (C, C') such that if |w|2 < C and A = C'|w
the solution x; , of (Py,) is unique,

2,

Xpa €M and xg = xof2 = O(|wl2)

Previous works: [Fuchs 2004] ¢!, [Bach 2008] ¢} — /2, [V. et
al. 2012] analysis-¢*

For most J, x7, € M = M(x;,) =M
Almost sharp, i.e. ®*ng & 9J(x0) = no model stability



Gaussian Measurements

Previous theorem: two non trivial hypotheses (INJr, ) and
*nF € ridJd(xo)

Proposition
Suppose ®ji ~jig N(0,1). If, either
1. J=|" |1, s=|x0lo and g > 28slogn+ s for some 3 > 1

2. J=| |« r=rank(xo) and q > pr(6y/n—5r) for some > 1
then (INJ7, ) and ®*ng € ri 0J(xo)

/2-stability: 2slog n/s measures VS model stability: 2slog n



Part IV: Algorithmic Implication

In order to solve
y=®&x +w

we consider for a partly smooth function J, the optimization
5 & Aot ®x|3 4+ \J
Xy,x € Argmin 2|y — &x[3 + AJ(x) (Pya)
x€R"

Goal

How to assess that an algorithm provides the good model in finite
time?
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Gradient descent
(k1) (k) pVS(x(k))

But J is not smooth. Several strategies:
e Smoothing of J
e Interior point method
e Subgradient descent

e Proximal methods
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Life is Smooth: Moreau—Yosida

Infimal convolution
(fOg)(x) = ir\l/f f(x)+g(v—x)
Moreau-Yosida regularization
Mor(f] = f0(1/2)] - |?

For any convex function f (not smooth, not full-domain)
e dom Mor[f] = R"
e Mor[f] is continuously differentiable

e argmin Mor[f] = argmin f



Proximity Operator

Proximity operator = unique argument of Moreau infimum

1
Proxs(v) = argmin f(x) + §||X —v|3

x€eR"

Smooth interpretation: implicit gradient step

Proxs(x) = x — VMor[f](x)



Proximity = Generalized Projection

Indicator function

400 otherwise.

() {o if xeC

1
Prox,,(v) = argmin Prox,,(v) + §||x —v|?
X

1
= argmin =|x — v|? = Me(v)
xeC 2



Subdifferential
and Proximity Operator

Resolvant of the subdifferential (as a notation)

Proxs(v) = (Id + 9f)"(v)




Proximal Fixed Point

T = Proxg

/N

Fix T = argmin & T is firmly nonexpansive

we sk'M/
T"'x — x*

Firmly nonexpansive

| Proxe (x)—Proxe (y) [P+ (Id—Proxe ) (x)— (1d—Proxe) () P < |x—y [P
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An ldea: Splitting

. 1
min £(x) = Sy — ®x|* + Alx|x
| N
F AJ

& not smooth ® / Proxg hard to compute ®
But:

e [ is smooth

e Prox,  is easy to compute
ST(t)

Soft thresholding

A U (Proxy g ()i = sign(a)(xi] — M)+
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Fixed Point

x* € argminf + g
0 € VF(x*) + XdJ(x*)
0 € pVF(x*) + pAdJ(x¥)
0 € pVF(x*) — x* + x* + pAdJ(x*)
(Id = pVF)(x*) € (Id + pAdJ)(x™)
x* = (Id + pAdJ) "1 (Id — pVF)(x*)
x* = Prox,y(x* — pVF(x*))




Fixed Point

T = Prox,yy(x — pVF(-))

Fix T = argmin F + \J T is firmly nonexpansive

Krasnosel'skii-Mann

T'x — x*
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Algorithm: Forward-Backward

x(mHl) = ProprJ(X(") — pVF(x(M))
——

backward forward
Special cases
e Gradient descent: J =10

x(r1) = x(n) _ p7 F(x(M)
e Proximal point: F =0
x(+1) — Proxp)\J(x(”))
e Projected gradient: J = i¢

x(M) = Ne(x() — pV F(x(M))



Model Identifiability

x(kF1) — ProprJ(x(k) — pVF(x(k)))




Model Identifiability

x(kF1) — ProprJ(x(k) — pVF(x(k)))

Not a rate of convergence result but a finite time result
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Take Away

e Unified analysis of recovery guarantees for regularized linear
inverse problems
e Partial smoothness provides a nice framework to work with

Several (semi-) open problems:
e How to define a functional J from a set of model (M) aem?
e What happens for J not convex?
e What occurs at the boundary ?

e |n infinite dimension 7

Thanks for your attention!



More?

S. V., G. Peyré, and J. Fadili

Low Complexity Regularization of Linear Inverse Problems
Sampling Theory, a Renaissance, 2015

— review chapter (cover the same spectrum of topics)

S. V., C. Deledalle, G. Peyré, J. Fadili, and C. Dossal
The Degrees of Freedom of Partly Smooth Regularizers
Annals of the Institute of Statistical Mathematics, 2016
— risk estimation and sensitivity

S. V., G. Peyré, and J. Fadili

Model Consistency of Partly Smooth Regularizers
preprint (HAL/arxiv), 2014

— model stability & identifiability

J. Fadili, G. Peyré, S. Vaiter, C. Deledalle, and J. Salmon
Stable Recovery with Analysis Decomposable Priors
Proc. SampTA, 2013

— (?-stability



Part V: Parameter Selection

In order to solve
y=®&x +w

we consider for a partly smooth function J, the optimization

1
Xy € Al sly = Ox|3 + AJ(x) (Py.x)
xeRn

Goal

How to choose an adequate \ ?



Influence of A\




Influence of A\




Influence of A\

L




Influence of A\
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Let's be Random

Until now, we considered deterministic observations
y=&®&x+w
Let's add a noise model, for instance a Gaussian one

Y =®xg+ W where W ~ N(0,0%1d,)



Risk Estimation

1
Xy 5 € Argmin =y — ®x|3 + AJ(x) (Pya)
’ x€eRnN 2



Risk Estimation

1
x3(y) € Argmin 51y — x|+ AJ(x)
X n

Prediction risk
RA(Y) = Ew[®x5(Y) — ®xol3
Our objective is to minimize this risk, i.e. finding

A*(Y) € Argmin R\(Y)
AERY

[ssue

In practice, xg is not known . ..

We are going to define an estimator of R\(Y)

(Py,A)



Degrees of Freedom and Stein's Lemma



Simple Example

* 1
x(y) = argmin Sly = ox|3 + AJ(x) (Pya)
xeRn"

If J is smooth, first-order condition:
P (Px3(y) —y¥) + AVI(xX(y)) =0

If I = ®*® + AD2J(x}(y)) is invertible, implicit function theorem
gives
Dxi(y) = o



