Recovery Guarantees for Low Complexity Models

Samuel Vaiter
CNRS \& Université de Bourgogne Joint work with J. Fadili \& G. Peyré

January 19, 2017
Aachen

Linear Inverse Problem

Recover data x_{0} from observations y

$$
y=\underbrace{\Phi x_{0}}_{\mu_{0}}+w
$$

Linear Inverse Problem

Recover data x_{0} from observations y

$$
y=\underbrace{\Phi x_{0}}_{\mu_{0}}+w
$$

Linear Inverse Problem

Recover data x_{0} from observations y

$$
y=\underbrace{\Phi x_{0}}_{\mu_{0}}+w
$$

Linear Inverse Problem

Recover data x_{0} from observations y

$$
y=\underbrace{\Phi x_{0}}_{\mu_{0}}+w
$$

Linear Inverse Problem

Recover data x_{0} from observations y

$$
y=\underbrace{\Phi x_{0}}_{\mu_{0}}+w
$$

This talk:

- finite dimensional setting $\rightarrow x_{0} \in \mathbb{R}^{n}, y \in \mathbb{R}^{q}$
- No (explicit) assumption on the distribution of the noise w
- Φ is the linear measurement/degradation operator

Linear Inverse Problem

Recover data x_{0} from observations y

$$
y=\underbrace{\Phi x_{0}}_{\mu_{0}}+w
$$

Here $\Phi x_{0}=k \star x_{0}$. In Fourier domain,

$$
\hat{x}_{0}=\frac{\hat{y}}{\hat{k}}-\frac{\hat{w}}{\hat{k}}
$$

Linear Inverse Problem

Recover data x_{0} from observations y

$$
y=\underbrace{\Phi x_{0}}_{\mu_{0}}+w
$$

Here $\Phi x_{0}=k \star x_{0}$. In Fourier domain,

$$
\hat{x}_{0}=\frac{\hat{y}}{\hat{k}}-\frac{\hat{w}}{\hat{k}}
$$

Linear Inverse Problem

Recover data x_{0} from observations y

$$
y=\underbrace{\Phi x_{0}}_{\mu_{0}}
$$

Here $\Phi x_{0}=k \star x_{0}$. In Fourier domain,

$$
\hat{x}_{0}=\frac{\hat{y}}{\hat{k}}
$$

Linear Inverse Problem

Recover data x_{0} from observations y

$$
y=\underbrace{\Phi x_{0}}_{\mu_{0}}
$$

Here $\Phi x_{0}=k \star x_{0}$. In Fourier domain,

$$
\hat{x}_{0}=\frac{\hat{y}}{\hat{k}}
$$

Linear Inverse Problem

Recover data x_{0} from observations y

$$
y=\underbrace{\Phi x_{0}}_{\mu_{0}}+w
$$

Summary: the inverse problem of recovering x_{0} from y is ill-posed

Regularization

As we just saw (in a different language), the optimization problem

$$
\underset{\succ}{\operatorname{argmin}}\|y-\Phi x\|_{2}^{2}
$$

leads to an unstable solution.

Regularization

As we just saw (in a different language), the optimization problem

$$
\underset{v}{\operatorname{argmin}}\|y-\Phi x\|_{2}^{2}
$$

leads to an unstable solution.

Could we cast an another optimization scheme with better properties ?

Regularization

As we just saw (in a different language), the optimization problem

$$
\underset{v}{\operatorname{argmin}}\|y-\Phi x\|_{2}^{2}
$$

leads to an unstable solution.

Could we cast an another optimization scheme with better properties?
\rightarrow idea of regularization.

Regularization

$\underset{x}{\operatorname{Argmin}}\left\|y-\Phi_{x}\right\|_{2}^{2}+\lambda J(x)$

Regularization

$$
\underset{x}{\operatorname{Argmin}}\|y-\Phi x\|_{2}^{2}+\lambda\|x\|_{2}^{2}
$$

Natural idea: a physical signal has a (relatively) low energy

Regularization

$$
\underset{x}{\operatorname{Argmin}}\|y-\Phi x\|_{2}^{2}+\lambda\|x\|_{2}^{2}
$$

Natural idea: a physical signal has a (relatively) low energy

Not very satisfying

Regularization

$$
\underset{x}{\operatorname{Argmin}}\|y-\Phi x\|_{2}^{2}+\lambda J(x)
$$

But wait, x_{0} is a familly of spikes, why not just count them?

Regularization

$$
\underset{x}{\operatorname{Argmin}}\|y-\Phi x\|_{2}^{2}+\lambda|\operatorname{supp}(x)|
$$

But wait, x_{0} is a familly of spikes, why not just count them? \rightarrow sparsity

Regularization

$$
\underset{x}{\operatorname{Argmin}}\|y-\Phi x\|_{2}^{2}+\lambda|\operatorname{supp}(x)|
$$

But wait, x_{0} is a familly of spikes, why not just count them?
\rightarrow sparsity
Issues: $x \mapsto|\operatorname{supp}(x)|$ is non-differentiable, non-convex

Regularization

$$
\underset{x}{\operatorname{Argmin}}\|y-\Phi x\|_{2}^{2}+\lambda|\operatorname{supp}(x)|
$$

But wait, x_{0} is a familly of spikes, why not just count them?
\rightarrow sparsity
Issues: $x \mapsto|\operatorname{supp}(x)|$ is non-differentiable, non-convex Two alternatives:

- Use a greedy solver
- Embrace the power of convex relaxation

Regularization

$$
\underset{x}{\operatorname{Argmin}}\|y-\Phi x\|_{2}^{2}+\lambda\|x\|_{1}
$$

But wait, x_{0} is a familly of spikes, why not just count them?
\rightarrow sparsity
Issues: $x \mapsto|\operatorname{supp}(x)|$ is non-differentiable, non-convex Two alternatives:

- Use a greedy solver
- Embrace the power of convex relaxation

Regularization

$$
\underset{x}{\operatorname{Argmin}}\|y-\Phi x\|_{2}^{2}+\lambda\|x\|_{1}
$$

But wait, x_{0} is a familly of spikes, why not just count them?
\rightarrow sparsity
Issues: $x \mapsto|\operatorname{supp}(x)|$ is non-differentiable, non-convex Two alternatives:

- Use a greedy solver
- Embrace the power of convex relaxation

The connection between $|\operatorname{supp}(\cdot)|$ and $\|\cdot\|_{1}$ is known as compressed sensing at Aachen

What If?

What If?

What If?

What If?

$$
\left(\begin{array}{llllll}
1 & 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 2 & 3 & 4 & 5 \\
1 & 3 & 2 & 2 & 4 & 2 \\
1 & 1 & 2 & 3 & 4 & 5 \\
1 & 4 & 2 & 2 & 4 & 1 \\
1 & 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 2 & 3 & 4 & 5
\end{array}\right)
$$

Main Assumption

x_{0} lives in a low-dimensional submanifold of \mathbb{R}^{n}

Main Assumption

x_{0} lives in a low-dimensional submanifold of \mathbb{R}^{n}
e.g. x_{0} is sparse, block-sparse, piecewise constant, piecewise affine, low-rank, etc.

Main Assumption

x_{0} lives in a low-dimensional submanifold of \mathbb{R}^{n}
e.g. x_{0} is sparse, block-sparse, piecewise constant, piecewise affine, low-rank, etc.

Our goal: encompass all these priors under a single (convex) umbrella.

Convex Analysis 101: Euler Equation

\mathcal{E} convex + smooth

$$
0=\nabla \mathcal{E}\left(x^{\star}\right) \Longleftrightarrow x^{\star} \in \underset{x}{\operatorname{Argmin}} \mathcal{E}(x)
$$

Convex Analysis 101: Subdifferential

Convex Analysis 101: Subdifferential

Convex Analysis 101: Subdifferential

Convex Analysis 101: Subdifferential

$\partial \mathcal{E}(t)=\left\{\eta: \mathcal{E}\left(t^{\prime}\right) \geqslant \mathcal{E}(t)+\left\langle\eta, t^{\prime}-t\right\rangle\right\}$

Convex Analysis 101: Euler Equation

\mathcal{E} convex + smooth

$$
0=\nabla \mathcal{E}\left(x^{\star}\right) \Longleftrightarrow x^{\star} \in \underset{x}{\operatorname{Argmin}} \mathcal{E}(x)
$$

\mathcal{E} convex

$$
0 \in \partial \mathcal{E}\left(x^{\star}\right) \Longleftrightarrow x^{\star} \in \underset{\succ}{\operatorname{Argmin}} \mathcal{E}(x)
$$

Part I: ℓ^{2}-stability

In order to solve

$$
y=\Phi x_{0}+w
$$

we consider for a convex function J, the optimization

$$
x_{y, \lambda}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}} \frac{1}{2}\|y-\Phi x\|_{2}^{2}+\lambda J(x)
$$

Goal
Provide an upper bound of the estimation error $\left\|x_{y, \lambda}^{\star}-x_{0}\right\|$

Notations

$$
\begin{aligned}
& C=\partial J(x) \text { : subdifferential } \\
& \text { of } J \text { at } x \\
& \text { aff }(C) \text { : affine hull of } C \\
& \text { ri } C \text { : relative interior of } C \\
& \text { par(} C \text { : subspace parallel } \\
& \text { to aff }(C)
\end{aligned}
$$

$$
S_{x}=\operatorname{par} \partial J(x), T_{x}=S_{x}^{\perp}, e_{x}=\Pi_{T_{x}}(\partial J(x))
$$

Notations

$C=\partial J(x)$: subdifferential
of J at x
aff (C) : affine hull of C
ri C : relative interior of C
par (C) : subspace parallel
to aff (C)

$$
S_{x}=\operatorname{par} \partial J(x), T_{x}=S_{x}^{\perp}, e_{x}=\Pi_{T_{x}}(\partial J(x))
$$

Notations

$C=\partial J(x)$: subdifferential
of J at x
aff (C) : affine hull of C
ri C : relative interior of C
par(C : subspace parallel
to aff (C)

$$
S_{x}=\operatorname{par} \partial J(x), T_{x}=S_{x}^{\perp}, e_{x}=\Pi_{T_{x}}(\partial J(x))
$$

Notations

Notations

$C=\partial J(x)$: subdifferential of J at x aff (C) : affine hull of C ri C : relative interior of C $\operatorname{par}(C)$: subspace parallel to $\operatorname{aff}(C)$

$$
S_{x}=\operatorname{par} \partial J(x), T_{x}=S_{x}^{\perp}, e_{x}=\Pi_{T_{x}}(\partial J(x))
$$

Notations

$C=\partial J(x)$: subdifferential of J at x aff (C) : affine hull of C ri C : relative interior of C $\operatorname{par}(C)$: subspace parallel to $\operatorname{aff}(C)$

$$
S_{x}=\operatorname{par} \partial J(x), T_{x}=S_{x}^{\perp}, e_{x}=\Pi_{T_{x}}(\partial J(x))
$$

(Non-Degenerated) Source Condition

$$
\exists \eta \in \mathbb{R}^{q} \quad \text { s.t } \quad \Phi^{*} \eta \in \partial J(x)
$$

$\left(\mathrm{SC}_{x}\right)$
(Non-Degenerated) Source Condition

$$
\exists \eta \in \mathbb{R}^{q} \quad \text { s.t } \quad \phi^{*} \eta \in \partial J(x)
$$

$$
\begin{aligned}
& x \in \underset{u}{\operatorname{Argmin}} J(u) \text { s.t } \Phi x=\Phi u \\
\Leftrightarrow & 0 \in \partial J(x)+\mathcal{N}_{\operatorname{Ker} \Phi}(x) \\
\Leftrightarrow & 0 \in \partial J(x)+\operatorname{lm} \Phi^{*} \\
\Leftrightarrow & \operatorname{lm} \Phi^{*} \cap \partial J(x) \neq \emptyset
\end{aligned}
$$

(Non-Degenerated) Source Condition

$$
\exists \eta \in \mathbb{R}^{q} \quad \text { s.t } \quad \Phi^{*} \eta \in \partial J(x)
$$

$$
\begin{aligned}
& x \in \underset{u}{\operatorname{Argmin} J(u) \text { s.t } \Phi x=\Phi u} \\
\Leftrightarrow & 0 \in \partial J(x)+\mathcal{N}_{\text {Ker } \Phi}(x) \\
\Leftrightarrow & 0 \in \partial J(x)+\operatorname{lm} \Phi^{*} \\
\Leftrightarrow & \operatorname{lm} \Phi^{*} \cap \partial J(x) \neq \emptyset
\end{aligned}
$$

Non-degenerated source condition

$$
\exists \eta \in \mathbb{R}^{q} \quad \text { s.t } \quad \Phi^{*} \eta \in \operatorname{ri} \partial J(x)
$$

Restricted Injectivity

$$
\begin{equation*}
\operatorname{Ker} \Phi \cap T=\{0\} \tag{T}
\end{equation*}
$$

Observe that if $y=\Phi x_{0}+0$ and $x_{0} \in T$ (known). Then,

$$
x_{0}=\underset{\Phi_{x=y}}{\operatorname{argmin}} J(x) \Leftrightarrow\left(\mathrm{INJ}_{T}\right) \text { holds }
$$

We proved a uniqueness result based on this remark (NSP-like, not covered today easy question!)

ℓ^{2}-stability

$$
\begin{gathered}
y=\underbrace{\Phi x_{0}}_{=y_{0}}+w \\
x_{y, \lambda}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}} \frac{1}{2}\|y-\Phi x\|_{2}^{2}+\lambda J(x)
\end{gathered}
$$

Theorem

Assume ($\widetilde{\mathrm{SC}}_{x_{0}}$), associated to a non-degenerate certificate η, and (INJ_{T}) hold. Choosing $\lambda=c\|w\|_{2}, c>0$, for any minimizer $x_{y, \lambda}^{\star}$ of $\left(\mathcal{P}_{y, \lambda}\right)$

$$
\left\|x_{y, \lambda}^{\star}-x_{y_{0}, 0^{+}}^{\star}\right\|_{2} \leqslant C(c, \Phi, \eta)\|w\|_{2}
$$

ℓ^{2}-stability

$$
\begin{gathered}
y=\underbrace{\Phi x_{0}}_{=y_{0}}+w \\
x_{y, \lambda}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}} \frac{1}{2}\|y-\Phi x\|_{2}^{2}+\lambda J(x)
\end{gathered}
$$

Theorem

Assume ($\left.\widetilde{S C}_{x_{0}}\right)$, associated to a non-degenerate certificate η, and (INJ_{T}) hold. Choosing $\lambda=c\|w\|_{2}, c>0$, for any minimizer $x_{y, \lambda}^{\star}$ of ($\mathcal{P}_{y, \lambda}$)

$$
\left\|x_{y, \lambda}^{\star}-x_{0}\right\|_{2}=O\left(\|w\|_{2}\right)
$$

Previous works:
[Grasmair et al. 2010]: ℓ^{1}
[Grasmair 2011]: $J\left(x_{y, \lambda}^{\star}-x_{0}\right)=O\left(\|w\|_{2}\right)$
[Haltmeier 2012]: analysis- ℓ^{1} with a frame

ℓ^{2}-stability

- $\left\|x_{y, \lambda}^{\star}-x_{y_{0}, 0^{+}}^{\star}\right\|_{2} \leqslant C(c, \Phi, \eta)\|w\|_{2}$ provides a worst case bound

ℓ^{2}-stability

- $\left\|x_{y, \lambda}^{\star}-x_{y_{0}, 0^{+}}^{\star}\right\|_{2} \leqslant C(c, \Phi, \eta)\|w\|_{2}$ provides a worst case bound
- The use of ℓ^{2}-norm is not central. Other data fidelity term can be considered

ℓ^{2}-stability

- $\left\|x_{y, \lambda}^{\star}-x_{y_{0}, 0^{+}}^{\star}\right\|_{2} \leqslant C(c, \Phi, \eta)\|w\|_{2}$ provides a worst case bound
- The use of ℓ^{2}-norm is not central. Other data fidelity term can be considered
- A similar analysis can be performed for the constrained case, i.e.

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}} J(x) \quad \text { s.t } \quad\|y-\Phi x\|_{2} \leqslant \varepsilon
$$

ℓ^{2}-stability

- $\left\|x_{y, \lambda}^{\star}-x_{y_{0}, 0^{+}}^{\star}\right\|_{2} \leqslant C(c, \Phi, \eta)\|w\|_{2}$ provides a worst case bound
- The use of ℓ^{2}-norm is not central. Other data fidelity term can be considered
- A similar analysis can be performed for the constrained case, i.e.

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}} J(x) \quad \text { s.t } \quad\|y-\Phi x\|_{2} \leqslant \varepsilon
$$

ℓ^{2}-stability

- $\left\|x_{y, \lambda}^{\star}-x_{y_{0}, 0^{+}}^{\star}\right\|_{2} \leqslant C(c, \Phi, \eta)\|w\|_{2}$ provides a worst case bound
- The use of ℓ^{2}-norm is not central. Other data fidelity term can be considered
- A similar analysis can be performed for the constrained case, i.e.

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}} J(x) \quad \text { s.t } \quad\|y-\Phi x\|_{2} \leqslant \varepsilon
$$

Connection to compressed sensing

Proposition

Assume $J=\|\cdot\|_{1}, \Phi_{i j} \sim i i d ~ \mathcal{N}(0,1)$ and $s=\left\|x_{0}\right\|_{0}$. If $q>2 s \log (n / s)+7 / 5 s$, then $\left(\mathrm{SC}_{x_{0}}\right)$ and $\left(\mathrm{INJ}_{T}\right)$ hold.

Should I be Happy?

Should I be Happy?

Should I be Happy?

Should I be Happy ?

Should I be Happy?

We need to use our main assumption
x_{0} lives in a low-dimensional submanifold of \mathbb{R}^{n}

Part II: Definition of a Model

In order to solve

$$
y=\Phi x_{0}+w
$$

we consider for a convex function J, the optimization

$$
x_{y, \lambda}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}} \frac{1}{2}\|y-\Phi x\|_{2}^{2}+\lambda J(x)
$$

Goal

Connect a convex function J to a signal model (geometric / combinatorial) \mathcal{M}

Some Priors

Type Sparse signal
Complexity measure $\|\cdot\|_{0}=|\operatorname{supp}(\cdot)|$
Natural model: $\quad\{z: \operatorname{supp}(z)=\operatorname{supp}(x)\}$
Convex candidate: $\|\cdot\|_{1}$

Some Priors

Type Block-sparse signal
Complexity measure $\left|\operatorname{supp}_{\mathcal{B}}(\cdot)\right|$
Natural model: $\quad\left\{z: \operatorname{supp}_{\mathcal{B}}(z)=\operatorname{supp}_{\mathcal{B}}(x)\right\}$
Convex candidate: $\|\cdot\|_{\mathcal{B}}$

Some Priors

Type Piecewise constant signal
Complexity measure $\|\nabla \cdot\|_{0}=|\operatorname{supp}(\nabla \cdot)|$
Natural model: $\quad\{z: \operatorname{supp}(\nabla z)=\operatorname{supp}(\nabla x)\}$
Convex candidate: $\|\nabla \cdot\|_{1}$

Some Priors

$$
\left(\begin{array}{llllll}
1 & 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 2 & 3 & 4 & 5 \\
1 & 3 & 2 & 2 & 4 & 2 \\
1 & 1 & 2 & 3 & 4 & 5 \\
1 & 4 & 2 & 2 & 4 & 1 \\
1 & 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 2 & 3 & 4 & 5
\end{array}\right)
$$

Type Low rank matrix
Complexity measure $\|\sigma(\cdot)\|_{0}=\operatorname{rank}(\cdot)$
Natural model: $\quad\{z: \operatorname{rank}(z)=\operatorname{rank}(x)\}$
Convex candidate: $\|\cdot\|_{*}$

Back to ℓ^{1}

Back to ℓ^{1}

Back to ℓ^{1}

Back to ℓ^{1}

Partial Smoothness

1. $\left(\|\cdot\|_{1}\right)_{\mid \mathcal{M}}$ is affine around x
2. For every $h \in \mathcal{M}^{\perp}, t \mapsto\|x+t h\|_{1}$ is not differentiable at 0
3. $\left(\partial\|\cdot\|_{1}\right)_{\mid \mathcal{M}}$ is constant around x relatively to \mathcal{M}

Partial Smoothness

1. $\left(\|\cdot\|_{1}\right)_{\mid \mathcal{M}}$ is C^{2} around x
2. For every $h \in \mathcal{M}^{\perp}, t \mapsto\|x+t h\|_{1}$ is not differentiable at 0
3. $\left(\partial\|\cdot\|_{1}\right)_{\mid \mathcal{M}}$ is continuous around x relatively to \mathcal{M}

Partial Smoothness

J is said to be partly smooth relatively to a C^{2}-manifold \mathcal{M} at x if: 1. $J_{\mid \mathcal{M}}$ is C^{2} around x
2. For every $h \in\left(\mathcal{T}_{x} \mathcal{M}\right)^{\perp}, t \mapsto\|x+t h\|_{1}$ is not differentiable at 0
3. $(\partial J)_{\mid \mathcal{M}}$ is continuous around x relatively to \mathcal{M}

Partial Smoothness

J is said to be partly smooth relatively to a C^{2}-manifold \mathcal{M} at x if: 1. $J_{\mid \mathcal{M}}$ is C^{2} around x
2. For every $h \in\left(\mathcal{T}_{x} \mathcal{M}\right)^{\perp}, t \mapsto\|x+t h\|_{1}$ is not differentiable at 0
3. $(\partial J)_{\mid \mathcal{M}}$ is continuous around x relatively to \mathcal{M}

Notation: $J \in \operatorname{PS}_{x}(\mathcal{M})$
Introduced by [Lewis 2002] following [Lemaréchal et al. 2000]
Proposition (Locally uniquely defined)
If $J \in \operatorname{PS}_{x}(\mathcal{M})$ and $J \in \operatorname{PS}_{x}\left(\mathcal{M}^{\prime}\right)$ then

$$
\mathcal{M} \equiv^{x} \mathcal{M}^{\prime}
$$

Partial Smoothness

J is said to be partly smooth relatively to a C^{2}-manifold \mathcal{M} at x if: 1. $J_{\mid \mathcal{M}}$ is C^{2} around x
2. $T_{x} \mathcal{M}=T_{x} \quad(=\operatorname{par} \partial J(x))$
3. $(\partial J)_{\mid \mathcal{M}}$ is continuous around x relatively to \mathcal{M}

Notation: $J \in \mathrm{PS}_{x}(\mathcal{M})$
Introduced by [Lewis 2002] following [Lemaréchal et al. 2000]
Proposition (Locally uniquely defined)
If $J \in \mathrm{PS}_{x}(\mathcal{M})$ and $J \in \mathrm{PS}_{x}\left(\mathcal{M}^{\prime}\right)$ then

$$
\mathcal{M} \equiv^{x} \mathcal{M}^{\prime}
$$

Model Manifold

J	\mathcal{M}			
$\\|\cdot\\|_{1}$	$\{z: \operatorname{supp}(z) \subseteq \operatorname{supp}(x)\}$	same support		
$\\|\cdot\\|_{\mathcal{B}}$	$\left\{z: \operatorname{supp}_{\mathcal{B}}(z) \subseteq \operatorname{supp}_{\mathcal{B}}(x)\right\}$	same block-support		
$\\|\nabla \cdot\\|_{1}$	$\{z: \operatorname{supp}(\nabla z) \subseteq \operatorname{supp}(\nabla x)\}$	same jump set		
$\\|\cdot\\|_{*}$	$\{z: \operatorname{rank} z=\operatorname{rank} x\}$	same rank		
$\\|\cdot\\|_{\infty}$	$\left\{z: z_{l} \in \mathbb{R} \operatorname{sign}\left(x_{l}\right)\right\}$	same saturation ${ }^{1}$		

$$
{ }^{1} I=\left\{i:\left|x_{i}\right|=\|x\|_{\infty}\right\}
$$

Calculus Rules

under mild transversality condition:
Proposition (Lewis 2002, Daniilidis et al. 2014)

- If J is C^{2} around x then $J \in \operatorname{PS}_{x}\left(\mathbb{R}^{n}\right)$
- If $J \in \mathrm{PS}_{x}(\mathcal{M})$ and $J^{\prime} \in \mathrm{PS}_{x}\left(\mathcal{M}^{\prime}\right)$ then

$$
J+J^{\prime} \in \operatorname{PS}_{x}\left(\mathcal{M} \cap \mathcal{M}^{\prime}\right)
$$

- If A is a linear operator and $J \in \operatorname{PS}_{A x}\left(\mathcal{M}^{0}\right)$ then

$$
J \circ A \in \operatorname{PS}_{x}(\mathcal{M}) \text { where } \mathcal{M}=\left\{z: A u \in \mathcal{M}^{0}\right\}
$$

- Spectral lift

Fun Example

$$
J(x)=\max (0,\|x\|-1)
$$

Part III: Model Stability

In order to solve

$$
y=\Phi x_{0}+w
$$

we consider for a partly smooth function J, the optimization

$$
x_{y, \lambda}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}} \frac{1}{2}\|y-\Phi x\|_{2}^{2}+\lambda J(x)
$$

Goal
How to assess that $\mathcal{M}\left(x_{y, \lambda}^{\star}\right)=\mathcal{M}\left(x_{0}\right)$ and also $\left\|x_{y, \lambda}^{\star}-x_{0}\right\|$ small enough ?

(Non-Degenerated) Source Condition

$$
\exists \eta \in \mathbb{R}^{q} \quad \text { s.t } \quad \Phi^{*} \eta \in \partial J(x)
$$

$$
\begin{aligned}
& x \in \underset{u}{\operatorname{Argmin}} J(u) \text { s.t } \Phi x=\Phi u \\
& \quad 0 \in \partial J(x)+\mathcal{N}_{\operatorname{Ker} \Phi}(x) \\
\Leftrightarrow & 0 \in \partial J(x)+\operatorname{Im} \Phi^{*} \\
\Leftrightarrow & \operatorname{Im} \Phi^{*} \cap \partial J(x) \neq \emptyset
\end{aligned}
$$

Non-degenerated source condition

$$
\begin{equation*}
\exists \eta \in \mathbb{R}^{q} \quad \text { s.t } \quad \Phi^{*} \eta \in \operatorname{ri} \partial J(x) \tag{SC}
\end{equation*}
$$

(Non-Degenerated) Source Condition

$$
\exists \eta \in \mathbb{R}^{q} \quad \text { s.t } \quad \Phi^{*} \eta \in \partial J(x)
$$

$$
\begin{aligned}
& x \in \underset{u}{\operatorname{Argmin}} J(u) \text { s.t } \Phi x=\Phi u \\
& \quad 0 \in \partial J(x)+\mathcal{N}_{\operatorname{Ker} \Phi}(x) \\
\Leftrightarrow & 0 \in \partial J(x)+\operatorname{Im} \Phi^{*} \\
\Leftrightarrow & \operatorname{Im} \Phi^{*} \cap \partial J(x) \neq \emptyset
\end{aligned}
$$

Non-degenerated source condition

$$
\begin{equation*}
\exists \eta \in \mathbb{R}^{q} \quad \text { s.t } \quad \Phi^{*} \eta \in \operatorname{ri} \partial J(x) \tag{SC}
\end{equation*}
$$

(Non-Degenerated) Source Condition

$$
\exists \eta \in \mathbb{R}^{q} \quad \text { s.t } \quad \Phi^{*} \eta \in \partial J(x)
$$

$$
\begin{aligned}
& x \in \underset{u}{\operatorname{Argmin} J(u) \text { s.t } \Phi x=\Phi u} \\
\Leftrightarrow & 0 \in \partial J(x)+\mathcal{N}_{\text {Ker } \Phi}(x) \\
\Leftrightarrow & 0 \in \partial J(x)+\operatorname{lm} \Phi^{*} \\
\Leftrightarrow & \operatorname{lm} \Phi^{*} \cap \partial J(x) \neq \emptyset
\end{aligned}
$$

Non-degenerated source condition

$$
\exists \eta \in \mathbb{R}^{q} \quad \text { s.t } \quad \Phi^{*} \eta \in \operatorname{ri} \partial J(x)
$$

Minimal Norm (Pre-)Certificate
How to exhibit a certificate $\eta \in \mathbb{R}^{q}$ s.t $\Phi^{*} \eta \in \operatorname{ri} \partial J(x)$?
Could be a hard problem.

Minimal Norm (Pre-)Certificate
How to exhibit a certificate $\eta \in \mathbb{R}^{q}$ s.t $\Phi^{*} \eta \in \operatorname{ri} \partial J(x)$?
Could be a hard problem.
Minimal-norm certificate

$$
\eta_{0}=\underset{\eta \in \mathbb{R}^{a}}{\operatorname{argmin}}\|\eta\|_{2} \text { s.t. } \Phi^{*} \eta \in \partial J(x)
$$

Minimal Norm (Pre-)Certificate
How to exhibit a certificate $\eta \in \mathbb{R}^{q}$ s.t $\Phi^{*} \eta \in \operatorname{ri} \partial J(x)$?
Could be a hard problem.
Minimal-norm certificate

$$
\eta_{0}=\underset{\eta \in \mathbb{R}^{a}}{\operatorname{argmin}}\|\eta\|_{2} \text { s.t. } \Phi^{*} \eta \in \partial J(x)
$$

Linearized pre-certificate ($T=T_{x}$)

$$
\eta_{F}=\underset{\eta \in \mathbb{R}^{q}}{\operatorname{argmin}}\|\eta\|_{2} \text { s.t. } \Phi^{*} \eta \in \operatorname{aff} \partial J(x)
$$

Minimal Norm (Pre-)Certificate

How to exhibit a certificate $\eta \in \mathbb{R}^{q}$ s.t $\Phi^{*} \eta \in \operatorname{ri} \partial J(x)$?
Could be a hard problem.
Minimal-norm certificate

$$
\eta_{0}=\underset{\eta \in \mathbb{R}^{q}}{\operatorname{argmin}}\|\eta\|_{2} \text { s.t. } \Phi^{*} \eta \in \partial J(x)
$$

Linearized pre-certificate ($T=T_{x}$)

$$
\eta_{F}=\underset{\eta \in \mathbb{R}^{a}}{\operatorname{argmin}}\|\eta\|_{2} \text { s.t. } \Phi^{*} \eta \in \operatorname{aff} \partial J(x)
$$

Proposition

If $\left(\mathrm{INJ}_{T}\right)$ holds, then

1. η_{F} is well-defined
2. $\eta_{F}=\left(\Phi \Pi_{T}\right)^{+, *} e_{X}$
3. $\Phi^{*} \eta_{F} \in \operatorname{ri} \partial J(x) \Rightarrow \eta_{0}=\eta_{F}$
4. $\Phi^{*} \eta_{F} \in \operatorname{ri} \partial J(x) \Rightarrow x$ unique solution of $\left(\mathcal{P}_{y_{0}, 0^{+}}\right)$

Model Stability

$$
x_{y, \lambda}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}} \frac{1}{2}\left\|y-\Phi_{x}\right\|_{2}^{2}+\lambda J(x)
$$

Theorem

Assume that $J \in \mathrm{PS}_{x_{0}}(\mathcal{M}),\left(\mathrm{INJ}_{T_{x_{0}}}\right)$ and $\Phi^{*} \eta_{F} \in \operatorname{ri} \partial J\left(x_{0}\right)$ hold. Then, there exist (C, C^{\prime}) such that if $\|w\|_{2} \leqslant C$ and $\lambda=C^{\prime}\|w\|_{2}$, the solution $x_{y, \lambda}^{\star}$ of $\left(\mathcal{P}_{y, \lambda}\right)$ is unique,

$$
x_{y, \lambda}^{\star} \in \mathcal{M} \quad \text { and } \quad\left\|x_{y, \lambda}^{\star}-x_{0}\right\|_{2}=O\left(\|w\|_{2}\right)
$$

Model Stability

$$
x_{y, \lambda}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}} \frac{1}{2}\left\|y-\Phi_{x}\right\|_{2}^{2}+\lambda J(x)
$$

Theorem

Assume that $J \in \mathrm{PS}_{x_{0}}(\mathcal{M}),\left(\mathrm{INJ}_{T_{x_{0}}}\right)$ and $\Phi^{*} \eta_{F} \in \operatorname{ri} \partial J\left(x_{0}\right)$ hold. Then, there exist (C, C^{\prime}) such that if $\|w\|_{2} \leqslant C$ and $\lambda=C^{\prime}\|w\|_{2}$, the solution $x_{y, \lambda}^{\star}$ of $\left(\mathcal{P}_{y, \lambda}\right)$ is unique,

$$
x_{y, \lambda}^{\star} \in \mathcal{M} \quad \text { and } \quad\left\|x_{y, \lambda}^{\star}-x_{0}\right\|_{2}=O\left(\|w\|_{2}\right)
$$

Previous works: [Fuchs 2004] ℓ^{1}, [Bach 2008] $\ell^{1}-\ell^{2}$, [V. et al. 2012] analysis- ℓ^{1}
For most $J, x_{y, \lambda}^{\star} \in \mathcal{M} \Rightarrow \mathcal{M}\left(x_{y, \lambda}^{\star}\right)=\mathcal{M}$
Almost sharp, i.e. $\Phi^{*} \eta_{F} \notin \partial J\left(x_{0}\right) \Rightarrow$ no model stability

Gaussian Measurements

Previous theorem: two non trivial hypotheses $\left(\mathrm{INJ}_{T_{x_{0}}}\right)$ and $\Phi^{*} \eta_{F} \in \operatorname{ri} \partial J\left(x_{0}\right)$

Proposition

Suppose $\Phi_{i j} \sim_{i i d} \mathcal{N}(0,1)$. If, either

1. $J=\|\cdot\|_{1}, s=\left\|x_{0}\right\|_{0}$ and $q>2 \beta s \log n+s$ for some $\beta>1$
2. $J=\|\cdot\|_{*}, r=\operatorname{rank}\left(x_{0}\right)$ and $q>\beta r(6 \sqrt{n}-5 r)$ for some $\beta>1$ then $\left(\mathrm{INJ}_{T_{x_{0}}}\right)$ and $\Phi^{*} \eta_{F} \in \operatorname{ri} \partial J\left(x_{0}\right)$
ℓ^{2}-stability: $2 s \log n / s$ measures VS model stability: $2 s \log n$

Part IV: Algorithmic Implication

In order to solve

$$
y=\Phi x_{0}+w
$$

we consider for a partly smooth function J, the optimization

$$
x_{y, \lambda}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}} \frac{1}{2}\|y-\Phi x\|_{2}^{2}+\lambda J(x)
$$

Goal

How to assess that an algorithm provides the good model in finite time?

Algorithm and Non-smoothness

$$
x^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}} \mathcal{E}(x)=F(x)+\lambda J(x)
$$

Gradient descent

$$
x^{(k+1)}=x^{(k)}-\rho \nabla \mathcal{E}\left(x^{(k)}\right)
$$

Algorithm and Non-smoothness

$$
x^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}} \mathcal{E}(x)=F(x)+\lambda J(x)
$$

Gradient descent

$$
x^{(k+1)}=x^{(k)}-\rho \nabla \mathcal{E}\left(x^{(k)}\right)
$$

But J is not smooth. Several strategies:

- Smoothing of J
- Interior point method
- Subgradient descent
- Proximal methods

Algorithm and Non-smoothness

$$
x^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}} \mathcal{E}(x)=F(x)+\lambda J(x)
$$

Gradient descent

$$
x^{(k+1)}=x^{(k)}-\rho \nabla \mathcal{E}\left(x^{(k)}\right)
$$

But J is not smooth. Several strategies:

- Smoothing of J
- Interior point method
- Subgradient descent
- Proximal methods

Life is Smooth: Moreau-Yosida

Infimal convolution

$$
(f \square g)(x)=\inf _{v} f(x)+g(v-x)
$$

Moreau-Yosida regularization

$$
\operatorname{Mor}[f]=f \square(1 / 2)\|\cdot\|^{2}
$$

Life is Smooth: Moreau-Yosida

Infimal convolution

$$
(f \square g)(x)=\inf _{v} f(x)+g(v-x)
$$

Moreau-Yosida regularization

$$
\operatorname{Mor}[f]=f \square(1 / 2)\|\cdot\|^{2}
$$

For any convex function f (not smooth, not full-domain)

- dom $\operatorname{Mor}[f]=\mathbb{R}^{n}$
- Mor $[f]$ is continuously differentiable
- $\operatorname{argmin} \operatorname{Mor}[f]=\operatorname{argmin} f$

Proximity Operator

Proximity operator \equiv unique argument of Moreau infimum

$$
\operatorname{Prox}_{f}(v)=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x)+\frac{1}{2}\|x-v\|_{2}^{2}
$$

Smooth interpretation: implicit gradient step

$$
\operatorname{Prox}_{f}(x)=x-\nabla \operatorname{Mor}[f](x)
$$

Proximity \approx Generalized Projection

Indicator function

$$
\iota_{\mathcal{C}}(x)= \begin{cases}0 & \text { if } x \in \mathcal{C} \\ +\infty & \text { otherwise }\end{cases}
$$

Proposition (Proximity \equiv Projection)

If \mathcal{C} is a convex set, then

$$
\operatorname{Prox}_{\iota \mathcal{C}}=\Pi_{\mathcal{C}}
$$

$$
\begin{aligned}
\operatorname{Prox}_{\iota \mathcal{C}}(v) & =\underset{x}{\operatorname{argmin}} \operatorname{Prox}_{\iota_{\mathcal{C}}}(v)+\frac{1}{2}\|x-v\|^{2} \\
& =\underset{x \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{2}\|x-v\|^{2}=\Pi_{\mathcal{C}}(v)
\end{aligned}
$$

Subdifferential and Proximity Operator

Proposition

$$
p=\operatorname{Prox}_{f}(v) \Leftrightarrow v-p \in \partial f(p)
$$

Resolvant of the subdifferential (as a notation)

$$
\operatorname{Prox}_{f}(v)=(\operatorname{Id}+\partial f)^{-1}(v)
$$

Theorem
${\text { Fix } \text { Prox }_{f}=\operatorname{argmin} f}^{\arg }$

Proximal Fixed Point

Firmly nonexpansive
$\left\|\operatorname{Prox}_{\mathcal{E}}(x)-\operatorname{Prox}_{\mathcal{E}}(y)\right\|^{2}+\left\|\left(\operatorname{Id}-\operatorname{Prox}_{\mathcal{E}}\right)(x)-\left(\operatorname{Id}-\operatorname{Prox}_{\mathcal{E}}\right)(y)\right\|^{2} \leqslant\|x-y\|^{2}$

An Idea: Splitting

$$
\min _{x} \mathcal{E}(x)=\underbrace{\frac{1}{2}\|y-\Phi x\|^{2}}_{F}+\underbrace{\lambda\|x\|_{1}}_{\lambda J}
$$

\mathcal{E} not smooth $)^{-} / \operatorname{Prox}_{\mathcal{E}}$ hard to compute $)^{(2)}$

An Idea: Splitting

$$
\min _{x} \mathcal{E}(x)=\underbrace{\frac{1}{2}\|y-\Phi x\|^{2}}_{F}+\underbrace{\lambda\|x\|_{1}}_{\lambda J}
$$

\mathcal{E} not smooth $)^{-} / \operatorname{Prox}_{\mathcal{E}}$ hard to compute $)^{(2)}$ But:

- F is smooth
- $\operatorname{Prox}_{\lambda J}$ is easy to compute

Soft thresholding

$$
\left(\operatorname{Prox}_{\lambda\|\cdot\|_{1}}(x)\right)_{i}=\operatorname{sign}\left(x_{i}\right)\left(\left|x_{i}\right|-\lambda\right)_{+}
$$

Fixed Point

$$
\begin{aligned}
x^{\star} & \in \operatorname{argmin} f+g \\
0 & \in \nabla F\left(x^{\star}\right)+\lambda \partial J\left(x^{\star}\right)
\end{aligned}
$$

Fixed Point

$$
\begin{aligned}
x^{\star} & \in \operatorname{argmin} f+g \\
0 & \in \nabla F\left(x^{\star}\right)+\lambda \partial J\left(x^{\star}\right) \\
0 & \in \rho F\left(x^{\star}\right)+\rho \lambda \partial J\left(x^{\star}\right)
\end{aligned}
$$

Fixed Point

$$
\begin{aligned}
& x^{\star} \in \operatorname{argmin} f+g \\
& 0 \in \nabla F\left(x^{\star}\right)+\lambda \partial J\left(x^{\star}\right) \\
& 0 \in \rho \nabla F\left(x^{\star}\right)+\rho \lambda \partial J\left(x^{\star}\right) \\
& 0 \in \rho \nabla F\left(x^{\star}\right)-x^{\star}+x^{\star}+\rho \lambda \partial J\left(x^{\star}\right)
\end{aligned}
$$

Fixed Point

$$
\begin{aligned}
x^{\star} & \in \operatorname{argmin} f+g \\
0 & \in \nabla F\left(x^{\star}\right)+\lambda \partial J\left(x^{\star}\right) \\
0 & \in \rho \nabla F\left(x^{\star}\right)+\rho \lambda \partial J\left(x^{\star}\right) \\
0 & \in \rho \nabla F\left(x^{\star}\right)-x^{\star}+x^{\star}+\rho \lambda \partial J\left(x^{\star}\right) \\
(\operatorname{Id}-\rho \nabla F)\left(x^{\star}\right) & \in(\operatorname{Id}+\rho \lambda \partial J)\left(x^{\star}\right)
\end{aligned}
$$

Fixed Point

$$
\begin{aligned}
x^{\star} & \in \operatorname{argmin} f+g \\
0 & \in \nabla F\left(x^{\star}\right)+\lambda \partial J\left(x^{\star}\right) \\
0 & \in \rho \nabla F\left(x^{\star}\right)+\rho \lambda \partial J\left(x^{\star}\right) \\
0 & \in \rho \nabla F\left(x^{\star}\right)-x^{\star}+x^{\star}+\rho \lambda \partial J\left(x^{\star}\right) \\
(\operatorname{Id}-\rho \nabla F)\left(x^{\star}\right) & \in(\operatorname{Id}+\rho \lambda \partial J)\left(x^{\star}\right) \\
x^{\star} & =(\operatorname{Id}+\rho \lambda \partial J)^{-1}(\operatorname{Id}-\rho \nabla F)\left(x^{\star}\right)
\end{aligned}
$$

Fixed Point

$$
\begin{aligned}
x^{\star} & \in \operatorname{argmin} f+g \\
0 & \in \nabla F\left(x^{\star}\right)+\lambda \partial J\left(x^{\star}\right) \\
0 & \in \rho \nabla F\left(x^{\star}\right)+\rho \lambda \partial J\left(x^{\star}\right) \\
0 & \in \rho \nabla F\left(x^{\star}\right)-x^{\star}+x^{\star}+\rho \lambda \partial J\left(x^{\star}\right) \\
(\operatorname{Id}-\rho \nabla F)\left(x^{\star}\right) & \in(\operatorname{Id}+\rho \lambda \partial J)\left(x^{\star}\right) \\
x^{\star} & =(\operatorname{Id}+\rho \lambda \partial J)^{-1}(\operatorname{Id}-\rho \nabla F)\left(x^{\star}\right) \\
x^{\star} & =\operatorname{Prox}_{\rho \lambda J}\left(x^{\star}-\rho \nabla F\left(x^{\star}\right)\right)
\end{aligned}
$$

Fixed Point

$$
\begin{aligned}
x^{\star} & \in \operatorname{argmin} f+g \\
0 & \in \nabla F\left(x^{\star}\right)+\lambda \partial J\left(x^{\star}\right) \\
0 & \in \rho \nabla F\left(x^{\star}\right)+\rho \lambda \partial J\left(x^{\star}\right) \\
0 & \in \rho \nabla F\left(x^{\star}\right)-x^{\star}+x^{\star}+\rho \lambda \partial J\left(x^{\star}\right) \\
(\operatorname{Id}-\rho \nabla F)\left(x^{\star}\right) & \in(\operatorname{Id}+\rho \lambda \partial J)\left(x^{\star}\right) \\
x^{\star} & =(\operatorname{Id}+\rho \lambda \partial J)^{-1}(\operatorname{Id}-\rho \nabla F)\left(x^{\star}\right) \\
x^{\star} & =\operatorname{Prox}_{\rho \lambda J}\left(x^{\star}-\rho \nabla F\left(x^{\star}\right)\right)
\end{aligned}
$$

Proposition

$$
T x=\operatorname{Prox}_{\rho \lambda J}(x-\rho \nabla F(x))
$$

Fix $T=\operatorname{argmin} F+\lambda J$

Fixed Point

$$
T=\operatorname{Prox}_{\rho \lambda J}(x-\rho \nabla F(\cdot))
$$

Fix $T=\operatorname{argmin} F+\lambda J$
T is firmly nonexpansive

Algorithm: Forward-Backward

$$
x^{(n+1)}=\underbrace{\operatorname{Prox}_{\rho \lambda J}}_{\text {backward }}(\underbrace{x^{(n)}-\rho \nabla F\left(x^{(n)}\right)}_{\text {forward }})
$$

Special cases

- Gradient descent: $J=0$

$$
x^{(n+1)}=x^{(n)}-\rho \nabla F\left(x^{(n)}\right)
$$

Algorithm: Forward-Backward

$$
x^{(n+1)}=\underbrace{\operatorname{Prox}_{\rho \lambda J}}_{\text {backward }}(\underbrace{x^{(n)}-\rho \nabla F\left(x^{(n)}\right)}_{\text {forward }})
$$

Special cases

- Gradient descent: $J=0$

$$
x^{(n+1)}=x^{(n)}-\rho \nabla F\left(x^{(n)}\right)
$$

- Proximal point: $F=0$

$$
x^{(n+1)}=\operatorname{Prox}_{\rho \lambda J}\left(x^{(n)}\right)
$$

Algorithm: Forward-Backward

$$
x^{(n+1)}=\underbrace{\operatorname{Prox}_{\rho \lambda J}}_{\text {backward }}(\underbrace{x^{(n)}-\rho \nabla F\left(x^{(n)}\right)}_{\text {forward }})
$$

Special cases

- Gradient descent: $J=0$

$$
x^{(n+1)}=x^{(n)}-\rho \nabla F\left(x^{(n)}\right)
$$

- Proximal point: $F=0$

$$
x^{(n+1)}=\operatorname{Prox}_{\rho \lambda J}\left(x^{(n)}\right)
$$

- Projected gradient: $J=\iota_{\mathcal{C}}$

$$
x^{(n+1)}=\Pi_{\mathcal{C}}\left(x^{(n)}-\rho \nabla F\left(x^{(n)}\right)\right)
$$

Model Identifiability

$$
x^{(k+1)}=\operatorname{Prox}_{\rho \lambda J}\left(x^{(k)}-\rho \nabla F\left(x^{(k)}\right)\right)
$$

Theorem

Assume that $J \in \mathrm{PS}_{x_{0}}(\mathcal{M})$, $\left(\mathrm{INJ}_{T_{x_{0}}}\right), \Phi^{*} \eta_{F} \in \operatorname{ri} \partial J\left(x_{0}\right)$ hold and $0<\rho<2 /\|\Phi\|$. Then, there exist $\left(C, C^{\prime}\right)$ such that if $\|w\|_{2} \leqslant C$ and $\lambda=C^{\prime}\|w\|_{2}$, there exists k_{0} such that for all $k \geqslant k_{0}$

$$
x^{(k)} \in \mathcal{M} \quad \text { and } \quad x^{(k)} \rightarrow x_{0}
$$

Model Identifiability

$$
x^{(k+1)}=\operatorname{Prox}_{\rho \lambda J}\left(x^{(k)}-\rho \nabla F\left(x^{(k)}\right)\right)
$$

Theorem

Assume that $J \in \operatorname{PS}_{x_{0}}(\mathcal{M}),\left(\operatorname{INJ}_{T_{x_{0}}}\right), \Phi^{*} \eta_{F} \in \operatorname{ri} \partial J\left(x_{0}\right)$ hold and $0<\rho<2 /\|\Phi\|$. Then, there exist $\left(C, C^{\prime}\right)$ such that if $\|w\|_{2} \leqslant C$ and $\lambda=C^{\prime}\|w\|_{2}$, there exists k_{0} such that for all $k \geqslant k_{0}$

$$
x^{(k)} \in \mathcal{M} \quad \text { and } \quad x^{(k)} \rightarrow x_{0}
$$

Not a rate of convergence result but a finite time result

Take Away

- Unified analysis of recovery guarantees for regularized linear inverse problems
- Partial smoothness provides a nice framework to work with

Take Away

- Unified analysis of recovery guarantees for regularized linear inverse problems
- Partial smoothness provides a nice framework to work with

Several (semi-) open problems:

- How to define a functional J from a set of model $(\mathcal{M})_{\mathcal{M} \in \mathbb{M}}$?
- What happens for J not convex?
- What occurs at the boundary ?
- In infinite dimension ?

Take Away

- Unified analysis of recovery guarantees for regularized linear inverse problems
- Partial smoothness provides a nice framework to work with

Several (semi-) open problems:

- How to define a functional J from a set of model $(\mathcal{M})_{\mathcal{M} \in \mathbb{M}}$?
- What happens for J not convex?
- What occurs at the boundary ?
- In infinite dimension ?

Thanks for your attention!

More?

- S. V., G. Peyré, and J. Fadili

Low Complexity Regularization of Linear Inverse Problems Sampling Theory, a Renaissance, 2015
\rightarrow review chapter (cover the same spectrum of topics)

- S. V., C. Deledalle, G. Peyré, J. Fadili, and C. Dossal

The Degrees of Freedom of Partly Smooth Regularizers
Annals of the Institute of Statistical Mathematics, 2016
\rightarrow risk estimation and sensitivity

- S. V., G. Peyré, and J. Fadili

Model Consistency of Partly Smooth Regularizers preprint (HAL/arxiv), 2014
\rightarrow model stability \& identifiability

- J. Fadili, G. Peyré, S. Vaiter, C. Deledalle, and J. Salmon Stable Recovery with Analysis Decomposable Priors Proc. SampTA, 2013
$\rightarrow \ell^{2}$-stability

Part V: Parameter Selection

In order to solve

$$
y=\Phi x_{0}+w
$$

we consider for a partly smooth function J, the optimization

$$
x_{y, \lambda}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}} \frac{1}{2}\|y-\Phi x\|_{2}^{2}+\lambda J(x) \quad\left(\mathcal{P}_{y, \lambda}\right)
$$

Goal

How to choose an adequate λ ?

Influence of λ

Influence of λ

Influence of λ

Influence of λ

$$
\left\|x_{y, \lambda}^{\star}-x_{0}\right\|
$$

Let's be Random

Until now, we considered deterministic observations

$$
y=\Phi x_{0}+w
$$

Let's add a noise model, for instance a Gaussian one

$$
Y=\Phi x_{0}+W \quad \text { where } \quad W \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{Id}_{q}\right)
$$

Risk Estimation

$$
x_{y, \lambda}^{\star} \in \underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}} \frac{1}{2}\left\|y-\Phi_{x}\right\|_{2}^{2}+\lambda J(x) \quad\left(\mathcal{P}_{y, \lambda}\right)
$$

Risk Estimation

$$
x_{\lambda}^{\star}(y) \in \underset{x \in \mathbb{R}^{n}}{\operatorname{Argmin}} \frac{1}{2}\left\|y-\Phi_{x}\right\|_{2}^{2}+\lambda J(x) \quad\left(\mathcal{P}_{y, \lambda}\right)
$$

Prediction risk

$$
R_{\lambda}(Y)=\mathbb{E}_{W}\left\|\Phi x_{\lambda}^{\star}(Y)-\Phi x_{0}\right\|_{2}^{2}
$$

Our objective is to minimize this risk, i.e. finding

$$
\lambda^{\star}(Y) \in \underset{\lambda \in \mathbb{R}_{+}^{*}}{\operatorname{Argmin}} R_{\lambda}(Y)
$$

Issue

In practice, x_{0} is not known
We are going to define an estimator of $R_{\lambda}(Y)$

Degrees of Freedom and Stein's Lemma

Simple Example

$$
x_{\lambda}^{\star}(y)=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|y-\phi x\|_{2}^{2}+\lambda J(x)
$$

If J is smooth, first-order condition:

$$
\Phi^{*}\left(\Phi x_{\lambda}^{\star}(y)-y\right)+\lambda \nabla J\left(x_{\lambda}^{\star}(y)\right)=0
$$

If $\Gamma=\Phi^{*} \Phi+\lambda \mathrm{D}^{2} J\left(x_{\lambda}^{\star}(y)\right)$ is invertible, implicit function theorem gives

$$
D x_{\lambda}^{\star}(y)=\Gamma^{-1} \Phi^{*}
$$

