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Context

piecewise-constant low rank
?

(structured) sparsity S smooth data

spread representation

[Negahban et al. ’12], [Candes-Recht ’13], [Chandrasekaran et al. '10], ...



Inverse Problem and Variational Methods

Inverse problem / regression setting
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Union of Models
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—— combinatorial candidate |x|o = | supp(x)]
—— convex candidate |x|1 = > |x]

How to relate the model T and the functional J ?



What kind of results ?

o (deterministic and non-uniform) £2 stability

o (random/deterministic and non-uniform) model stability

o degrees of freedom (DoF) computation

o efficient risk estimation



Combinatorial and Convex Objects

X xl < 1




Combinatorial and Convex Objects

1-sparse vectors




Combinatorial and Convex Objects

1-sparse vectors

Irregularity of the unit ball



A Decomposability Point of View

Proposition
A - [1(x) ={n € R" : nr =sign(x)r and |[[n,flc <1}
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A Decomposability Point of View
Proposition
O - |1(x) ={n € R" : nr =sign(x)r and |[|n/| <1}
Definition (Decomposable norm [Candes-Recht '12])
Ol - [(x)={n€R" : n7. =ex and [n; [l. <1}
Proposition [V. et al. 15]

0J(x {nEIR{” . nr. =ex and f(ny ) < 1}

Definition (Partly smooth wrt linear model [v. et al. 15])
T, ey, fx “Lipschitz’-continuous

Proposition [v. et al. *15]
Almost all regularizers are PSL ... except the nuclear norm :(



Combinatorial and Convex Objects

Sym,(R) R3
(& <)

Matrix of rank 1 (+ zero vector)

ac — b®> = 0 — curve of degree 2

Matrix of unit nuclear norm

finite cylinder



Combinatorial and Convex Objects

rank x = 1

{x :

|x]« < 1}



Partial Smoothness

Partly smooth function [Lewis '02]
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Partial Smoothness

Partly smooth function [Lewis '02]

J restricted to M is C?

Vh e (Tpx)", t — J(x + th)
not smooth at O

Examples
U 2 T O S e
Algebraic stability

Sum, precomposition by a linear
operator and spectral lift are
stable within the class of PS.




Linearized Precertificate

Certificates are dual solutions of the noiseless problem, i.e.,
ps.t ®*p e dJ(x)



Linearized Precertificate

Certificates are dual solutions of the noiseless problem, i.e.,
ps.t ®*p e dJ(x)

Minimal norm certificate
po = argmin |p|

(D*pEaJ(Xo)
Linearized precertificate
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Oy PEAﬂ:aJ(Xo)
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Linearized Precertificate

Certificates are dual solutions of the noiseless problem, i.e.,
ps.t ®*p e dJ(x)

Minimal norm certificate Proposition

— argmin 3 :
P cb*pgaJ(xo) I d*py € ridJ(xo)
Linearized precertificate |
DF = argmin HPH CD*p/: c ri aJ(Xo)
(D*PEAﬂ:aJ(XQ)

Example: Sparse Regularization (BPDN, Lasso)

d*pr crid| - |1(x0) & TEE}Z(HCDJ-, (D3 ,) Lsign(x)r)| < 1

[Fuchs '04], [Tropp '05], ...



Model Stability

Theorem
Assume J is PS at xg relative to M. Suppose
O*pr €rid)(xg) and KerdNT, ={0}
There exists C > 0 such that if max(A, |w|/X) < C, the unique

solution of x* of (P, ) satisfies

x* € M, model stability
[x* = xof = O(|w]) ¢*-stability



Model Stability

Theorem
Assume J is PS at xg relative to M. Suppose
O*pr €rid)(xg) and KerdNT, ={0}
There exists C > 0 such that if max(A, |w|/X) < C, the unique
solution of x* of (P, ) satisfies
x* € M, model stability
[x* = xo| = O(|wl) ¢*-stability
Tightness

If &*pr & 0J(x0) = x* & M, no model stability
If ®*pr € bd 0J(xp) = case-by-case



Identification in Finite Time

Forward—Backward scheme
x* Tt = Prox, j(x* — pV F(x¥))



Identification in Finite Time

Forward—Backward scheme
xkTl = Propr(xk — pV F(xX))

Theorem
Assume J is PS at xp relative to M. Suppose

®*pr €rid)(xg) and KerdNT, = {0}

There exists C > 0 such that if max(\, [w|/A) < C, and
p < 2/|®|, one has

xX = xg convergence

Jko, Yk > ko, x* € M, finite identification
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Perspectives

approximate model

-

> S

e.g. weak £P space

non-convex regularization

'

eg. | |, with0 < p<1

infinite dimension

/\_v

e.g. C-BP, C-ROF

algorithmic implication

other algorithms,
accelerations

see Liang et al.



Thanks for
your attention

Want more ?

Review book chapter:
V., G. Peyré, J. Fadili, Low Complexity Regularizations, LNCS, 2014

Model selection/consistency:
V., G. Peyré, J. Fadili, Manifold Consistency with Partly Smooth Regularizers, TIT 2017

Special case for analysis sparsity:
V., C. Dossal, G. Peyré, J. Fadili, Robust Sparse Analysis Regularization, TIT, 2013
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Example: Nuclear Norm Regularization
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