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Context

(structured) sparsity

piecewise-constant low rank

spread representation

smooth data?

[Negahban et al. ’12], [Candes-Recht ’13], [Chandrasekaran et al. ’10], …



observations

Inverse Problem and Variational Methods

degradation operator ground truth
Rp

Rn

Rp → Rn

Variational methods

data
fidelity

convex
"regularization"

compromise

BPDN / LASSO
Total Variation
Nuclear
…

x̂–(y) ∈ Argmin
x∈Rp

F (Φx; y) + –J(x)

Inverse problem / regression setting

y = Φx0 + w

noise



Union of Models
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combinatorial candidate ||x ||0 = | supp(x)|
convex candidate ||x ||1 =

P
|xi |

T T

How to relate the model T and the functional J ?



What kind of results ?

◦ degrees of freedom (DoF) computation

◦ efficient risk estimation

◦ (deterministic and non-uniform) ‘2 stability

◦ (random/deterministic and non-uniform) model stability
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Combinatorial and Convex Objects

{x : ||x ||1 6 1}

Irregularity of the unit ball

1-sparse vectors
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Proposition [V. et al. ’15]

Almost all regularizers are PSL … except the nuclear norm :(

Definition (Partly smooth wrt linear model [V. et al. ’15])
Tx ; ex ; f x “Lipschitz”-continuous



Combinatorial and Convex Objects
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ac − b2 = 0 → curve of degree 2

Matrix of rank 1 (+ zero vector)

Matrix of unit nuclear norm

finite cylinder



Combinatorial and Convex Objects

{x : ||x ||∗ 6 1}

rank x = 1



Partial SmoothnessPartly Smooth Functions [Lewis 2002]
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Examples

Algebraic stability 
Sum, precomposition by a linear
operator and spectral lift are 
stable within the class of PS.

|| · ||1; ||∇ · ||1; || · ||1;2; || · ||∗; || · ||∞; · · ·



Linearized Precertificate
Certificates are dual solutions of the noiseless problem, i.e., 
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||p||

Minimal norm certificate

Linearized precertificate

�∗p0 ∈ ri @J(x0)

⇕
�∗pF ∈ ri @J(x0)

Proposition

�∗pF ∈ ri @|| · ||1(x0) ⇔ max
j∈Ic

|⟨�j ; �I(�
∗
I�I)

−1 sign(x0)I⟩| < 1

Example: Sparse Regularization (BPDN, Lasso)

[Fuchs ’04], [Tropp ’05], …

Certificates are dual solutions of the noiseless problem, i.e., 
p s.t. Φ∗p ∈ @J(x0)
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Tightness
If �∗pF ̸∈ @J(x0) ⇒ x? ̸∈ Mx0 no model stability
If �∗pF ∈ bd @J(x0) ⇒ case-by-case



Identification in Finite Time

xk+1 = ProxȷJ(x
k − ȷ∇F (xk))
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Identification in Finite Time

xk+1 = ProxȷJ(x
k − ȷ∇F (xk))

Forward—Backward scheme

‸

Assume J is PS at x0 relative to M. Suppose

Φ∗pF ∈ ri @J(x0) and KerΦ ∩ Tx0 = {0}

Theorem

There exists C > 0 such that if max(–; ||w ||=–) 6 C, and
ȷ < 2=||�||, one has

xk → x0
∃k0;∀k > k0; x

k ∈ Mx0

convergence
finite identification



Perspectives
approximate model

e.g. weak ‘p space

non-convex regularization

e.g. || · ||p with 0 < p < 1

infinite dimension

e.g. C-BP, C-ROF

algorithmic implication

other algorithms, 
accelerations

see Liang et al.



Thanks for 
your attention

Want more ?

Review book chapter:
V., G. Peyré, J. Fadili, Low Complexity Regularizations, LNCS, 2014

Model selection/consistency:
V., G. Peyré, J. Fadili, Manifold Consistency with Partly Smooth Regularizers, TIT 2017

Special case for analysis sparsity:
V., C. Dossal, G. Peyré, J. Fadili, Robust Sparse Analysis Regularization, TIT, 2013



Example: Nuclear Norm Regularization
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