Model Selection for Low Complexity Priors

Samuel Vaiter ${ }^{1}$, Jalal Fadili and Gabriel Peyré
${ }^{1}$ CNRS \& IMB, Dijon, (Burgundy) France
June 7, 2018
@SIAM IS

Context

piecewise-constant

low rank

spread representation
[Negahban et al. '12], [Candes-Recht '13], [Chandrasekaran et al. '10], ...

Inverse Problem and Variational Methods

Inverse problem / regression setting
observations
\mathbb{R}^{n}
degradation operator

$$
\mathbb{R}^{p} \rightarrow \mathbb{R}^{n}
$$

\qquad

Variational methods

$$
\hat{x}_{\lambda}(y) \in \underset{x \in \mathbb{R}^{p}}{\operatorname{Argmin}} F(\boldsymbol{\Phi} x, y)+\lambda J(x)
$$

BPDN / LASSO
Total Variation
Nuclear
...

Union of Models

\longrightarrow combinatorial candidate $\|x\|_{0}=|\operatorname{supp}(x)|$
\longrightarrow convex candidate $\|x\|_{1}=\sum\left|x_{i}\right|$

How to relate the model T and the functional J ?

What kind of results ?

\circ (deterministic and non-uniform) ℓ^{2} stability
\circ (random/deterministic and non-uniform) model stability

- degrees of freedom (DoF) computation
o efficient risk estimation

Combinatorial and Convex Objects

Combinatorial and Convex Objects

Combinatorial and Convex Objects

A Decomposability Point of View

Proposition

$$
\partial\|\cdot\|_{1}(x)=\left\{\eta \in \mathbb{R}^{n}: \eta_{I}=\operatorname{sign}(x)_{I} \quad \text { and } \quad\left\|\eta_{J}\right\|_{\infty} \leqslant 1\right\}
$$

A Decomposability Point of View

Proposition

$$
\partial\|\cdot\|_{1}(x)=\left\{\eta \in \mathbb{R}^{n}: \eta_{I}=\operatorname{sign}(x)_{I} \quad \text { and } \quad\left\|\eta_{J}\right\|_{\infty} \leqslant 1\right\}
$$

Definition (Decomposable norm [Candes-Recht '12])

$$
\partial\|\cdot\|(x)=\left\{\eta \in \mathbb{R}^{n}: \eta_{T_{x}}=e_{x} \quad \text { and } \quad\left\|\eta_{T_{\times}}\right\|_{*} \leqslant 1\right\}
$$

A Decomposability Point of View

Proposition

$$
\partial\|\cdot\|_{1}(x)=\left\{\eta \in \mathbb{R}^{n}: \eta_{I}=\operatorname{sign}(x)_{I} \quad \text { and } \quad\left\|\eta_{J}\right\|_{\infty} \leqslant 1\right\}
$$

Definition (Decomposable norm [Candes-Recht '12])

$$
\partial\|\cdot\|(x)=\left\{\eta \in \mathbb{R}^{n}: \eta_{T_{x}}=e_{x} \quad \text { and } \quad\left\|\eta_{T_{\times}}\right\|_{*} \leqslant 1\right\}
$$

Proposition [v. et al. '15]

$$
\partial J(x)=\left\{\eta \in \mathbb{R}^{n}: \eta_{T_{x}}=e_{x} \quad \text { and } \quad f_{x}\left(\eta_{T_{x}^{\perp}}\right) \leqslant 1\right\}
$$

A Decomposability Point of View

Proposition

$$
\partial\|\cdot\|_{1}(x)=\left\{\eta \in \mathbb{R}^{n}: \eta_{I}=\operatorname{sign}(x)_{I} \quad \text { and } \quad\left\|\eta_{J}\right\|_{\infty} \leqslant 1\right\}
$$

Definition (Decomposable norm [Candes-Recht ' 112)

$$
\partial\|\cdot\|(x)=\left\{\eta \in \mathbb{R}^{n}: \eta_{T_{x}}=e_{x} \quad \text { and } \quad\left\|\eta_{T_{x}}\right\|_{*} \leqslant 1\right\}
$$

Proposition [v. et al. '15]

$$
\partial J(x)=\left\{\eta \in \mathbb{R}^{n}: \eta_{T_{x}}=e_{x} \quad \text { and } \quad f_{x}\left(\eta_{T_{x}^{\perp}}\right) \leqslant 1\right\}
$$

Definition (Partly smooth wrt linear model [v. et al. '15])
T_{x}, e_{x}, f_{x} "Lipschitz"-continuous

A Decomposability Point of View

Proposition

$$
\partial\|\cdot\|_{1}(x)=\left\{\eta \in \mathbb{R}^{n}: \eta_{I}=\operatorname{sign}(x)_{I} \quad \text { and } \quad\left\|\eta_{J}\right\|_{\infty} \leqslant 1\right\}
$$

Definition (Decomposable norm [Candes-Recht ' 112)

$$
\partial\|\cdot\|(x)=\left\{\eta \in \mathbb{R}^{n}: \eta_{T_{x}}=e_{x} \quad \text { and } \quad\left\|\eta_{T_{x}^{\prime}}\right\|_{*} \leqslant 1\right\}
$$

Proposition [v. et al. '15]

$$
\partial J(x)=\left\{\eta \in \mathbb{R}^{n}: \eta_{T_{x}}=e_{x} \quad \text { and } \quad f_{x}\left(\eta_{T_{x}^{\perp}}\right) \leqslant 1\right\}
$$

Definition (Partly smooth wrt linear model [v. et al. '15])
T_{x}, e_{x}, f_{x} "Lipschitz"-continuous
Proposition [v. et al. '15]
Almost all regularizers are PSL

A Decomposability Point of View

Proposition

$$
\partial\|\cdot\|_{1}(x)=\left\{\eta \in \mathbb{R}^{n}: \eta_{I}=\operatorname{sign}(x)_{I} \quad \text { and } \quad\left\|\eta_{J}\right\|_{\infty} \leqslant 1\right\}
$$

Definition (Decomposable norm [Candes-Recht ' 112)

$$
\partial\|\cdot\|(x)=\left\{\eta \in \mathbb{R}^{n}: \eta_{T_{x}}=e_{x} \quad \text { and } \quad\left\|\eta_{T_{x}}\right\|_{*} \leqslant 1\right\}
$$

Proposition [v. et al. '15]

$$
\partial J(x)=\left\{\eta \in \mathbb{R}^{n}: \eta_{T_{x}}=e_{x} \quad \text { and } \quad f_{x}\left(\eta_{T_{x}^{\perp}}\right) \leqslant 1\right\}
$$

Definition (Partly smooth wrt linear model [v. et al. '15])
T_{x}, e_{x}, f_{x} "Lipschitz"-continuous
Proposition [v. et al. '15]
Almost all regularizers are PSL ... except the nuclear norm :(

Combinatorial and Convex Objects

$$
\begin{array}{ll}
\operatorname{Sym}_{2}(\mathbb{R}) \\
\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
\end{array} \quad \begin{aligned}
& \mathbb{R}^{3} \\
&
\end{aligned}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

Matrix of rank 1 (+ zero vector)

$$
a c-b^{2}=0 \rightarrow \text { curve of degree } 2
$$

Matrix of unit nuclear norm
finite cylinder

Combinatorial and Convex Objects

Partial Smoothness

Partly smooth function [Lewis '02]

Partial Smoothness

Partly smooth function [Lewis '02]

Partial Smoothness

Partly smooth function [Lewis '02]

Partial Smoothness

Partly smooth function [Lewis '02]

Linearized Precertificate

Certificates are dual solutions of the noiseless problem, i.e.,

$$
p \text { s.t. } \Phi^{*} p \in \partial J\left(x_{0}\right)
$$

Linearized Precertificate

Certificates are dual solutions of the noiseless problem, i.e.,

$$
p \text { s.t. } \Phi^{*} p \in \partial J\left(x_{0}\right)
$$

Minimal norm certificate

$$
p_{0}=\underset{\phi^{*} p \in \partial J\left(x_{0}\right)}{\operatorname{argmin}}\|p\|
$$

Linearized precertificate

Linearized Precertificate

Certificates are dual solutions of the noiseless problem, i.e.,

$$
p \text { s.t. } \Phi^{*} p \in \partial J\left(x_{0}\right)
$$

Minimal norm certificate

$$
p_{0}=\underset{\phi^{*} p \in \partial J\left(x_{0}\right)}{\operatorname{argmin}}\|p\|
$$

Linearized precertificate

$$
p_{F}=\underset{\Phi^{*} p \in \operatorname{Aff} \partial J\left(x_{0}\right)}{\operatorname{argmin}}\|p\|
$$

Proposition

$$
\begin{gathered}
\Phi^{*} p_{0} \in \operatorname{ri} \partial J\left(x_{0}\right) \\
\tilde{\mathbb{I}} \\
\Phi^{*} p_{F} \in \operatorname{ri} \partial J\left(x_{0}\right)
\end{gathered}
$$

Linearized Precertificate

Certificates are dual solutions of the noiseless problem, i.e.,

$$
p \text { s.t. } \Phi^{*} p \in \partial J\left(x_{0}\right)
$$

Minimal norm certificate

$$
p_{0}=\underset{\Phi^{*} p \in \partial J\left(x_{0}\right)}{\operatorname{argmin}}\|p\|
$$

Linearized precertificate

$$
p_{F}=\underset{\phi^{*} p \in \operatorname{Aff} \partial J\left(x_{0}\right)}{\operatorname{argmin}}\|p\|
$$

Proposition

$$
\begin{gathered}
\Phi^{*} p_{0} \in \operatorname{ri} \partial J\left(x_{0}\right) \\
\mathbb{\Downarrow} \\
\Phi^{*} p_{F} \in \operatorname{rid} \partial J\left(x_{0}\right)
\end{gathered}
$$

Example: Sparse Regularization (BPDN, Lasso)

$$
\Phi^{*} p_{F} \in \operatorname{ri} \partial\|\cdot\|_{1}\left(x_{0}\right) \Leftrightarrow \max _{j \in I^{c}}\left|\left\langle\Phi_{j}, \Phi_{I}\left(\Phi_{I}^{*} \Phi_{I}\right)^{-1} \operatorname{sign}\left(x_{0}\right)_{I}\right\rangle\right|<1
$$

[Fuchs '04], [Tropp '05], ...

Model Stability

Theorem

Assume J is PS at x_{0} relative to \mathcal{M}. Suppose

$$
\Phi^{*} p_{F} \in \operatorname{ri} \partial J\left(x_{0}\right) \quad \text { and } \quad \operatorname{Ker} \Phi \cap T_{x_{0}}=\{0\}
$$

There exists $C>0$ such that if $\max (\lambda,\|w\| / \lambda) \leqslant C$, the unique solution of x^{\star} of $\left(\mathcal{P}_{y, \lambda}\right)$ satisfies

$$
\begin{aligned}
& x^{\star} \in \mathcal{M}_{x_{0}} \\
& \left\|x^{\star}-x_{0}\right\|=O(\|w\|)
\end{aligned}
$$

model stability
ℓ^{2}-stability

Model Stability

Theorem

Assume J is PS at x_{0} relative to \mathcal{M}. Suppose

$$
\Phi^{*} p_{F} \in \operatorname{ri} \partial J\left(x_{0}\right) \quad \text { and } \quad \operatorname{Ker} \Phi \cap T_{x_{0}}=\{0\}
$$

There exists $C>0$ such that if $\max (\lambda,\|w\| / \lambda) \leqslant C$, the unique solution of x^{\star} of $\left(\mathcal{P}_{y, \lambda}\right)$ satisfies

$$
\begin{array}{ll}
x^{\star} \in \mathcal{M}_{x_{0}} & \text { model stal } \\
\left\|x^{\star}-x_{0}\right\|=O(\|w\|) & \ell^{2} \text {-stability }
\end{array}
$$

Tightness
If $\Phi^{*} p_{F} \notin \partial J\left(x_{0}\right) \Rightarrow x^{\star} \notin \mathcal{M}_{x_{0}}$ no model stability If $\Phi^{*} p_{F} \in \operatorname{bd} \partial J\left(x_{0}\right) \Rightarrow$ case-by-case

Identification in Finite Time

Forward-Backward scheme

$$
x^{k+1}=\operatorname{Prox}_{\rho J}\left(x^{k}-\rho \nabla F\left(x^{k}\right)\right)
$$

Identification in Finite Time

Forward-Backward scheme

$$
x^{k+1}=\operatorname{Prox}_{\rho J}\left(x^{k}-\rho \nabla F\left(x^{k}\right)\right)
$$

Theorem

Assume J is PS at x_{0} relative to \mathcal{M}. Suppose

$$
\Phi^{*} p_{F} \in \operatorname{ri} \partial J\left(x_{0}\right) \quad \text { and } \quad \operatorname{Ker} \Phi \cap T_{x_{0}}=\{0\}
$$

There exists $C>0$ such that if $\max (\lambda,\|w\| / \lambda) \leqslant C$, and $\rho<2 /\|\Phi\|$, one has

$$
\begin{aligned}
& x^{k} \rightarrow x_{0} \\
& \exists k_{0}, \forall k \geqslant k_{0}, x^{k} \in \mathcal{M}_{x_{0}}
\end{aligned}
$$

convergence
finite identification

Perspectives

approximate model

e.g. weak ℓ^{p} space
infinite dimension
non-convex regularization

e.g. $\|\cdot\|_{p}$ with $0<p<1$
algorithmic implication
other algorithms, accelerations
see Liang et al.

Thanks for your attention

Want more?

Review book chapter:
V., G. Peyré, J. Fadili, Low Complexity Regularizations, LNCS, 2014

Model selection/consistency:
V., G. Peyré, J. Fadili, Manifold Consistency with Partly Smooth Regularizers, TIT 2017

Special case for analysis sparsity:
V., C. Dossal, G. Peyré, J. Fadili, Robust Sparse Analysis Regularization, TIT, 2013

Example: Nuclear Norm Regularization

