Model Selection for Low Complexity Priors

Samuel Vaiter¹, Jalal Fadili and Gabriel Peyré

¹CNRS & IMB, Dijon, (Burgundy) France

June 7, 2018 @SIAM IS

Context

[Negahban et al. '12], [Candes-Recht '13], [Chandrasekaran et al. '10], ...

Inverse Problem and Variational Methods

Union of Models

- \rightarrow combinatorial candidate $||x||_0 = |\operatorname{supp}(x)|$
- \longrightarrow convex candidate $||x||_1 = \sum |x_i|$

How to relate the model T and the functional J?

What kind of results ?

 \circ (deterministic and non-uniform) ℓ^2 stability

o (random/deterministic and non-uniform) model stability

o degrees of freedom (DoF) computation

efficient risk estimation

Proposition

$$\partial \| \cdot \|_1(x) = \{\eta \in \mathbb{R}^n : \eta_I = \operatorname{sign}(x)_I \text{ and } \|\eta_J\|_{\infty} \leqslant 1\}$$

Proposition

$$\partial \| \cdot \|_1(x) = \{\eta \in \mathbb{R}^n : \eta_I = \operatorname{sign}(x)_I \text{ and } \|\eta_J\|_{\infty} \leqslant 1\}$$

 $\begin{array}{l} \text{Definition (Decomposable norm [Candes-Recht '12])}\\ \\ \partial \| \cdot \|(x) = \left\{ \eta \in \mathbb{R}^n \ : \ \eta_{\mathcal{T}_x} = \mathbf{e}_x \quad \text{and} \quad \| \eta_{\mathcal{T}_x^\perp} \|_* \leqslant 1 \right\} \end{array}$

Proposition

$$\partial \| \cdot \|_1(x) = \{\eta \in \mathbb{R}^n : \eta_I = \operatorname{sign}(x)_I \text{ and } \|\eta_J\|_{\infty} \leqslant 1\}$$

Definition (*Decomposable norm* [Candes-Recht '12])

 $\partial \| \cdot \| (x) = \left\{ \eta \in \mathbb{R}^n : \eta_{\mathsf{T}_x} = \mathbf{e}_x \text{ and } \| \eta_{\mathsf{T}_x^\perp} \|_* \leqslant 1 \right\}$

Proposition [V. et al. '15]

 $\partial J(x) = \left\{ \eta \in \mathbb{R}^n : \eta_{\mathsf{T}_x} = \mathsf{e}_x \text{ and } \mathsf{f}_x(\eta_{\mathsf{T}_x^\perp}) \leqslant 1 \right\}$

Proposition

$$\partial \| \cdot \|_1(x) = \{\eta \in \mathbb{R}^n : \eta_I = \operatorname{sign}(x)_I \text{ and } \|\eta_J\|_{\infty} \leqslant 1\}$$

 $\begin{array}{l} \text{Definition (Decomposable norm [Candes-Recht '12])}\\ \\ \partial \| \cdot \|(x) = \left\{ \eta \in \mathbb{R}^n \ : \ \eta_{\mathcal{T}_{x}} = \mathbf{e}_{x} \quad \text{and} \quad \| \eta_{\mathcal{T}_{x}^{\perp}} \|_{*} \leqslant 1 \right\} \end{array}$

Proposition [V. et al. '15]

$$\partial J(x) = \left\{ \eta \in \mathbb{R}^n : \eta_{\mathsf{T}_x} = \mathbf{e}_x \text{ and } f_x(\eta_{\mathsf{T}_x^\perp}) \leqslant 1 \right\}$$

Definition (*Partly smooth wrt linear model* [V. et al. '15]) T_x , e_x , f_x "Lipschitz"-continuous

Proposition

$$\partial \| \cdot \|_1(x) = \{\eta \in \mathbb{R}^n : \eta_I = \operatorname{sign}(x)_I \text{ and } \|\eta_J\|_{\infty} \leqslant 1\}$$

 $\begin{array}{l} \text{Definition (Decomposable norm [Candes-Recht '12])}\\ \\ \partial \| \cdot \| (x) = \left\{ \eta \in \mathbb{R}^n \ : \ \eta_{\mathcal{T}_{\times}} = \mathbf{e}_{\times} \quad \text{and} \quad \| \eta_{\mathcal{T}_{\times}^{\perp}} \|_{*} \leqslant 1 \right\} \end{array}$

Proposition [V. et al. '15]

 $\partial J(x) = \left\{ \eta \in \mathbb{R}^n : \eta_{\mathsf{T}_x} = \mathbf{e}_x \text{ and } \mathbf{f}_x(\eta_{\mathsf{T}_x^\perp}) \leqslant 1 \right\}$

Definition (*Partly smooth wrt linear model* [V. et al. '15]) T_x , e_x , f_x "Lipschitz"-continuous

Proposition [V. et al. '15]

Almost all regularizers are PSL

Proposition

$$\partial \| \cdot \|_1(x) = \{\eta \in \mathbb{R}^n : \eta_I = \operatorname{sign}(x)_I \text{ and } \|\eta_J\|_{\infty} \leqslant 1\}$$

 $\begin{array}{l} \text{Definition (Decomposable norm [Candes-Recht '12])} \\ \partial \| \cdot \| (x) = \left\{ \eta \in \mathbb{R}^n \ : \ \eta_{\mathcal{T}_x} = \mathbf{e}_x \quad \text{and} \quad \| \eta_{\mathcal{T}_x^{\perp}} \|_* \leqslant 1 \right\} \end{array}$

Proposition [V. et al. '15]

 $\partial J(x) = \left\{ \eta \in \mathbb{R}^n : \eta_{\mathsf{T}_x} = \mathbf{e}_x \text{ and } \mathbf{f}_x(\eta_{\mathsf{T}_x^\perp}) \leqslant 1 \right\}$

Definition (*Partly smooth wrt linear model* [V. et al. '15]) T_x , e_x , f_x "Lipschitz"-continuous

Proposition [V. et al. '15]

Almost all regularizers are PSL ... except the nuclear norm :(

Matrix of rank 1 (+ zero vector)

$$ac - b^2 = 0 \rightarrow$$
 curve of degree 2

Matrix of unit nuclear norm

finite cylinder

Partly smooth function [Lewis '02]

Partly smooth function [Lewis '02]

Partly smooth function [Lewis '02]

J restricted to M is C² ∀h ∈ $(T_M x)^{\perp}$, t → J(x + th) not smooth at 0

Partly smooth function [Lewis '02]

J restricted to \mathcal{M} is C² ∀h ∈ $(T_{\mathcal{M}}x)^{\perp}$, t → J(x + th) not smooth at 0

Examples $\|\cdot\|_{1}, \|\nabla\cdot\|_{1}, \|\cdot\|_{1,2}, \|\cdot\|_{*}, \|\cdot\|_{\infty}, \cdots$

Algebraic stability Sum, precomposition by a linear operator and spectral lift are stable within the class of PS.

Certificates are dual solutions of the noiseless problem, i.e.,

p s.t. $\Phi^* p \in \partial J(x_0)$

Certificates are dual solutions of the noiseless problem, i.e., p s.t. $\Phi^* p \in \partial J(x_0)$

Minimal norm certificate $p_0 = \underset{\Phi^* p \in \partial J(x_0)}{\operatorname{argmin}} \|p\|$ Linearized precertificate $p_F = \underset{\Phi^* p \in \operatorname{Aff} \partial J(x_0)}{\operatorname{argmin}} \|p\|$

Certificates are dual solutions of the noiseless problem, i.e., p s.t. $\Phi^* p \in \partial J(x_0)$

Minimal norm certificate $p_0 = \underset{\Phi^* p \in \partial J(x_0)}{\operatorname{argmin}} \|p\|$ $\Phi^* p \in \partial J(x_0)$ Linearized precertificate $p_F = \underset{\Phi^* p \in \operatorname{Aff} \partial J(x_0)}{\operatorname{argmin}} \|p\|$

Proposition

Certificates are dual solutions of the noiseless problem, i.e., p s.t. $\Phi^* p \in \partial J(x_0)$

Minimal norm certificate	Proposition
$p_0 = \operatorname*{argmin}_{\Phi^* p \in \partial J(x_0)} \ p\ $	$\Phi^* p_0 \in ri\partial J(x_0)$
Linearized precertificate	\uparrow
$p_F = \underset{\Phi^* p \in Aff \partial J(x_0)}{\operatorname{argmin}} \ p \ $	$\Phi^* p_F \in \operatorname{ri} \partial J(x_0)$

Example: Sparse Regularization (BPDN, Lasso)

 $\Phi^* p_F \in \operatorname{ri} \partial \| \cdot \|_1(x_0) \Leftrightarrow \max_{j \in I^c} |\langle \Phi_j, \Phi_I(\Phi_I^* \Phi_I)^{-1} \operatorname{sign}(x_0)_I \rangle| < 1$

[Fuchs '04], [Tropp '05], ...

Model Stability

Theorem

Assume *J* is PS at x_0 relative to \mathcal{M} . Suppose

$$\Phi^* p_F \in \operatorname{ri} \partial J(x_0)$$
 and $\operatorname{Ker} \Phi \cap T_{x_0} = \{0\}$

There exists C > 0 such that if $\max(\lambda, ||w||/\lambda) \leq C$, the unique solution of x^* of $(\mathcal{P}_{y,\lambda})$ satisfies

$$x^{\star} \in \mathcal{M}_{x_0}$$
model stability $\|x^{\star} - x_0\| = O(\|w\|)$ ℓ^2 -stability

Model Stability

Theorem

Assume *J* is PS at x_0 relative to \mathcal{M} . Suppose

$$\Phi^* p_F \in \operatorname{ri} \partial J(x_0)$$
 and $\operatorname{Ker} \Phi \cap T_{x_0} = \{0\}$

There exists C > 0 such that if $\max(\lambda, ||w||/\lambda) \leq C$, the unique solution of x^* of $(\mathcal{P}_{y,\lambda})$ satisfies

$$x^{\star} \in \mathcal{M}_{x_0}$$
model stability $\|x^{\star} - x_0\| = O(\|w\|)$ ℓ^2 -stability

Tightness

If $\Phi^* p_F \notin \partial J(x_0) \Rightarrow x^* \notin \mathcal{M}_{x_0}$ no model stability If $\Phi^* p_F \in \operatorname{bd} \partial J(x_0) \Rightarrow$ case-by-case

Identification in Finite Time

Forward—Backward scheme

$$x^{k+1} = \operatorname{Prox}_{\rho J}(x^k - \rho \nabla F(x^k))$$

Identification in Finite Time

Forward—Backward scheme

$$x^{k+1} = \operatorname{Prox}_{\rho J}(x^k - \rho \nabla F(x^k))$$

Theorem

Assume J is PS at x_0 relative to \mathcal{M} . Suppose

 $\Phi^* p_F \in \operatorname{ri} \partial J(x_0)$ and $\operatorname{Ker} \Phi \cap T_{x_0} = \{0\}$ There exists C > 0 such that if $\max(\lambda, \|w\|/\lambda) \leq C$, and $\rho < 2/\|\Phi\|$, one has

$$x^k \to x_0$$
convergence $\exists k_0, \forall k \geqslant k_0, x^k \in \mathcal{M}_{x_0}$ finite identification

Perspectives

Thanks for your attention

Want more ?

Review book chapter:

V., G. Peyré, J. Fadili, Low Complexity Regularizations, LNCS, 2014

Model selection/consistency:

V., G. Peyré, J. Fadili, Manifold Consistency with Partly Smooth Regularizers, TIT 2017

Special case for analysis sparsity:

V., C. Dossal, G. Peyré, J. Fadili, Robust Sparse Analysis Regularization, TIT, 2013

Example: Nuclear Norm Regularization

