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observations — y € R"
design matrix — X = [ X1 ‘ ‘ X, ] c RNXP

Sparse logistic regression on et o7)

B = argmin S log(1 + exp(—yi(B, Xi))) + MBI
PERP iy
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A typical Lasso solver

Iterative Shrinkage-Thresholding Algorithm

for _ Iin range(n_epoch):
primal = soft_thresholding(primal - 1/L * grad(primal))



A typical Lasso solver

Iterative Shrinkage-Thresholding Algorithm

for _ Iin range(n_epoch):
primal = soft_thresholding(primal - 1/L * grad(primal))

Goal: Choose n_epoch such that

- primal close to the solution ,BA

- does not take too much time (how to select n_epoch?)

hard to have guarantees!



Duality for the Lasso

Primal problem Dual problem
A 1 2 A Lo X 2
B = argmin —|y — XB||" + A|B|1 0 = argmax ~|y|> ly /A — 0|5
ﬁERP 2 GEAX 2 2
d;f.D(e)

dual feasible set
Ax ={0€R" : V1< j<p X0 <1}

link equation

0 =X""(y — XP)



Consequence of strong duality

P(B) =D(0)

lack of optimality

P(B)  P(B)
— o ———
D(6) D(6)

dual gap



A typical Lasso solver — slightly modified

Iterative Shrinkage-Thresholding Algorithm

while dual gap(primal, dual) tol:
primal = ST(primal 1/L grad(primal))

dual = ?2?2?7?

=Xy —XB) - 0 = Ay — XBWY) € Ax 7



A typical Lasso solver — slightly modified

Iterative Shrinkage-Thresholding Algorithm

while dual gap(primal, dual) tol:
primal = ST(primal 1/L grad(primal))
residual = y X @ primal
dual = residual max(lam, norm(X.T @ residual, Inf)

=Xy —XB) - 0 = Ay — XBWY) € Ax 7

(Mairal, 2010)

v residual
L) = r(O) S max(\, [ X T r(9)] o) rt) =y — xgH)

res



Dual gap is (way) slower than lack of optim.

what we want

P(B) P(BY)
————— 0 — 00—
D(6{%) D(0)

what we have

0 50 100 150 200 200
CD epoch t

Leukemia dataset: p = 7129, n =72, A = Ajuax/10



Our goal

what we want

P(B)  P(BY)
————— 00— —>
D(61)) D(6)

res

ave

Find a good dual candidate
0~ 0



what we want

P(B)  P(BY)
_— - —
D(6™)) D(6)

what we expect

0 50 100 150 200 200
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iterate: Bt
residual: r(t) = y — X,B(t)

Sign identification

N @
‘ A
S(\l 0.3 E(\l o | l
) = .
T T T T T T T & 1
0 o t
Vector AutoRegressive sequence (VAR)
xt) = Ax(t=1) 4 p e R” ) Fit a VAR to infer lim r(t) = )@
Iheorem @ When sign identified?
_ Ve > T :sign(B1) = sign(B . . . .
S) B 'S (F7) = sign(P) @ high dimensional fit
(r'")i>7 is a VAR




Extrapolation in 1D: Aitken A2 method

t— 00 A
X

x(t) = ax(t=1) 4 p
Aitken A2 method

~N-

2 equations w/ 2 unknowns:
x\) g =3 (x(t_l) — >A<>

X(t—2) A\

™
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see https://francisbach.com/acceleration-without-pain/

XXV.—On Bernoulli’s Numerical Solution of Algebraic Equations.

By A. C. Aitken, D.Sc.

(MS. received April 21, 1926. Read May 24, 1926.)

§ 1. INTRODUCTORY.

THE aim of the present paper is to extend Daniel Bernoulli’s method * of

approximating to the numerically greatest root of an algebraic equation.
On the basis of the extension here given it now becomes possible to make
Bernoulli’s method a means of evaluating not merely the greatest root, but
all the roots of an equation, whether real, complex, or repeated, by an

(Aitken, Proc. R. Soc. Edinb., 1927)

work also when x{t) asymptotic VAR

kK x(® 2(t)
l 1 4.0000 X
' (—1)* 2 26667 X

™= |lim 4 3 3.4667 3.1667

t—oo  £= 2k + 1 4 28952 3.1333

5 3.3397 3.1452

6 29760 3.1397

7 3.2837 3.1427

need 3 iterates to extrapolate 8 3.0171 3.1409

0 3.2524 3.1421

10 3.0418 3.1413



see https://francisbach.com/acceleration-without-pain/

Extrapolation in higher dimension

Iterative Proecedures for Nonlinear Inteeral Fe Lions
t t_]_ t— 00 A egra juations
x(t) = Ax(t=1) 1 p s X

DoNaLy (5. ANDERSON

Harvard Universily, Cambridoe, Massachusetts

— needs n+ 1 equations

Abstract, The numerical solution of nonlinear integral equations involves the iterative so-
» - . . 2 o °
tation of finite svstems of nonlinear algebraie or transcendental equations, Certain conven
tional techniques for treating such systems are reviewed in the context of a particular ¢lass of

% needs n _I_ 2 it erat eS non!linear equations. A procedure 18 svathesized to ollset some of the disadvantages nl'...;'.'.u‘-‘l:

techniques in this context; however, the procedure 12 not restricted to this particular cluss ol
systems of nonlinear equations

@ But n is large
(Anderson, J. ACM., 1965)

Anderson idea: choose a budget K of previous iterates

R0 = cox(®) o x (=D g IO

1.2
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(t) oa!
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(t)



see https://francisbach.com/acceleration-without-pain/

Extrapolation in higher dimension

Iterative Proecedures for Nonlinear Inteeral Fe tions
t t—1 t— 00 A mlinear Integral Equations
x\) = Ax(t=1) L p > X

DoNaLd (5. ANDERRON

— needs n+ 1 equations

Abstract, The numerical solution of nonlinear integral equations involves the iterative so-

. L. . . L .
tation of finite svstems of nonlinear algebraie or transcendental equations, Certain conven

. tional techniques for treating such systems are reviewed in the context of a particular elass of
— needs n -+ 2 iterates nonlinear equations. A procedure is syuthesized to ofisel

some of the dissdvant CPACRE of these
(.('(tl;niqm-s in thig context; however, the procedure 12 not restricted to this particular cluss ol
systems of nonlinear equations

@ But n is large
(Anderson, J. ACM., 1965)

Anderson idea: choose a budget K of previous iterates

Regularized Nonlinear Acceleration

)’%(t) — C()X(t) _|_ C]_X(t_l) _|_ - _|_ C(t—l_l_K)
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Ecole Normale Supérieure, Paris, France. Ecole Normale Supérieure, Paris, France.
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Francis Bach
INRIA & D.I., UMR 8548,

C = argmin || oA X (t) + - CK_1Ax(t K+1) ”% > Beol Normale Supérieurs, Pariy, Fanc

C:i— 1 Abstract
E j—

( t) ( t) ( t— 1 ) We describe a convergence acceleration technique for generic optimization prob-
A X — X I X lems. Our scheme computes estimates of the optimum from a nonlinear average
4 of the iterates produced by any optimization method. The weights in this average
are computed via a simple and small linear system, whose solution can be updated

1 ' ' ' 1 online. This acceleration scheme runs in parallel to the base algorithm, provid-
consecutive iterates lead to close extrapolation o et s By e e o
method is running. Numerical experiments are detailed on classical classification

i I tfraint

problems.

(Scieur, d’Aspremont, Bach, NeurlPS, 2016)
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Extrapolation for the Lasso

Extrapolated residuals

r(t) — C()r(t) 4 Clr(t—l) 4o r/g:j—;—K)

aCC

Extrapolated dual point

0 = r(®) /max(X, X Tr{t) o)

ACC aACC aCC

what we want

P(B)  P(BY)
—Q—Q—QA—Q—> 0 o0 100 150 200
D(6') D)) D(H) CD epoch t

res aCC

what we have

what we had Leukemia dataset: p = 7129, n =72, A = Ajuax/10



Extrapolation for other models

sparse logistic regression, rcv1 dataset
p =20k, n=20k
A = Amax/20

101

10—5_

| |
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(N
Ot

Multitask Lasso, MEG data
p= 17498, n = 305

A = Amax/10

1072

1077

| | | | |
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celer: a dropin Lasso class for scikit-learn

[
Aaltaa Y A AVYA AATAYTATA aalaVYa A A
v o - o \ J \J W Aw o \_J o W A W v

from celer import Easso, LassoCV

Implements dual extrapolation (this talk), gap safe screen and working sets strategy

Performance & implementation on imaging settings is an open question!

Q mathurinm/celer
arxiv:1907.05830 mathurinm.qgithub.io/celer/

Thanks for your attention!


https://mathurinm.github.io/celer/
http://www.apple.com/uk
https://arxiv.org/abs/1907.05830

