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df =
nX
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ff2
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(Efron 1986)

E[d̂f ] = df

—̂ weakly differentiable with essentially bounded weak derivative

=⇒
Stein’s lemma (1981)
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Stein Unbiased Risk Estimation (SURE)

df =
nX

i=1

1

ff2
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(Efron 1986)

—̂ weakly differentiable with essentially bounded weak derivative

=⇒

empirical
degrees of freedom

SURE(—̂)(Y ) = ||Y − —̂(Y )||22 + 2ff2d̂f − nff2

E[SURE(—̂)(Y )] = E[||—̂(Y )−Φx0||22]



Three Missions

Prove that y !→ —̂(y) = �x̂–(y) is

x̂–(y) ∈ Argmin
x∈Rp

F (Φx; y) + –J(x)

single-valued

weakly differentiable

such that we know how to compute div(—)(y)
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||Φx − y ||22 + –J(x)

—̂(y) = �x̂–(y) uniquely defined (true when ∇2F positive definite)

y !→ —̂(y) Lipschitz, hence weakly differentiable

Are we done ?

No, we need a formula for div(—̂)(y) true a.e. to compute E[d̂f ]

−→ tricky part
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non-uniqueness of x̂–(y)

non-differentiability of J
non-invertibility of �

Issues
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J(x) = ||Ax ||1

where Ker [Φ] ∩ Ker [AIc ] and I = supp(Ax̂–(y))

d̂f = dimKerAIc

[Tibshirani and Taylor ’12, V. et al ’13]
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Sensitivity Analysis of the Prediction

y !→ —̂(y) is C1(Rn \ H) and ∀y ̸∈ H; d̂f = tr(D—̂(y) where

D—̂(y) = ΦT (Φ
⊤
T ΦT + –∇2

MJ(x̂–(y)))
+Φ⊤

T

where T = TMx̂–(y) and x̂–(y) a solution such that

Ker
ˆ
∇2

MJ(x̂–(y))
˜
∩ T = {0}

If J is polyhedral (e.g. ||A · ||1, ||A · ||∞, . . . ) or ||A · ||1;2, then
H is of zero Lebesgue measure
there is a solution such that Ker

ˆ
∇2

MJ(x̂–(y))
˜
∩ T = {0}



Ingredients of the Proof

Riemmanian geometry −→ provides closed-form expression

Implicit function theorem −→ foundation to quantify the Jacobian

O-minimal geometry −→ excludes pathological cases



Numerical Example



A Case Study: Isotropic Total Variation

x̂–(y) ∈ Argmin
x∈Rp1×p2

1

2
||y −Φx ||22 + –TV(x)

x0 y

Φx0 + w

TV(x) = ||∇x ||1;2 =
X

i ;j

q
(xi+1;j − xi ;j)2 + (xi ;j+1 − xi ;j)2

TV partly smooth at x ∈ Rp for M = {z : supp(∇z) = supp(∇x)}
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SURE(—̂)(Y ) = ||Y − —̂(Y )||22 + 2ff2d̂f − nff2

normalization operator

d̂f = tr
“
ΦI(Φ

⊤
I ΦI − – div(‹∇x̂–(y) ◦ Π(∇x̂–(y))⊥)∇)+Φ⊤

I

”

projection by block
I = supp(∇x̂–(y))

D—̂(y) potentially huge p × p −→ Monte-Carlo estimation

d̂f
MC

(z) = ⟨z; D—(y) · z⟩

computable with a linear system (GMRES)



A Case Study: Isotropic Total Variation

0.05 0.1 0.15 0.2

10

12

14

16

18

λ

C
o

s
t

 

 

Prediction risk

Closed−form SURE  

Conf. interval

x0 y x̂–(y)



Conclusion

Risk estimation ⇐⇒ Sensitivity of the estimator



Conclusion

Practical limitations

−→ Closed form expression of d̂f unavailable for arbitrary J

−→ unsuitable for non-variational methods

−→ can be unstable if the model is not identified

Risk estimation ⇐⇒ Sensitivity of the estimator



Conclusion

Practical limitations

−→ Closed form expression of d̂f unavailable for arbitrary J

−→ unsuitable for non-variational methods

−→ can be unstable if the model is not identified

Alternative approaches

−→ Finite difference approximation SURE [Ramani et al. ’08]

−→ Iterative Chain Rule SUGAR [Deledalle et al. ’14]

Risk estimation ⇐⇒ Sensitivity of the estimator



Thanks for your attention !

Any questions ?

Joint work with C. Deledalle, C. Dossal, J. Fadili and G. Peyré
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