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LASSO
X (y) € Argmin Total Variation
XERP

Nuclear
data convex
fidelity "regularization”
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create an estimator of Ry (Y')
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Degrees of Freedom and Stein's Lemma

— 1
degrees of freedom _ N = A
(Efron 1986) df Zl 52 cov(Y,, M:(Y))

empirical

degrees of freedom df = div(2)(Y) = tr(DA(Y))

Stein’s lemma (1981)

[ weakly differentiable with essentially bounded weak derivative

l

i[df] = df




Stein Unbiased Risk Estimation (SURE)

— 1
degrees of freedom _ N = A
(Efron 1986) df ; 52 cov(Y,, M:(Y))

empirical

degrees of freedom df = div(2)(Y) = tr(DA(Y))

SURE(2)(Y) = |Y — a(Y)|3 + 202df — no?

[ weakly differentiable with essentially bounded weak derivative

!

S[SURE(2)(Y)] = E[JA(Y) — ®xo[3]




(y) € Argmin F(®x, y) + AJ(x)
XERP

Prove that y — [i(y) = ®X,(y) is

single-valued
weakly differentiable

such that we know how to compute div(u)(y)
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An Observation

1
fa(y) € Argmin Z[@x — y[5 + XJ(x)
xERP

f(y) = ®x\(y) uniquely defined (true when V2 F positive definite)

y — [(y) Lipschitz, hence weakly differentiable

Are we done ?

No, we need a formula for div()(y) true a.e. to compute E[df]

— tricky part
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Simple Example

X (y) = argmin F(®x, y) + AJ(x)
XERP

Let F(z,y) = |z — y||5 and J is C?
First-order conditions

O (PR (y) —y) + AVI(R(y)) =0
Implicit function theorem

Di(y) =@l (y) &' where T=0'd 4+ AD?J

non-uniqueness of X, (y)
Issues non-differentiability of J

non-invertibility of I
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Assumption on the Regularizer

Partly smooth function [Lewis 2002]

J restricted to M is C?

M Vh e (Tpmx)", t — J(x + th)

M not smooth at 0

|- 1 same support

same jump

<

| - |loo  same saturation

Examples
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y — f(y)is CH(R" \ ‘H) and Vy & H, df = tr(Dfi(y) where
DA(y) = ®r(®T®r +AV3J(5a())) 7
where T = Ty xn(y) and X\ (y) a solution such that

Ker [ViJ(%a(¥))| N T = {0}

J(x) = [Ax] df = dim Ker Aje

Example

where Ker [®] N Ker [Are] and I = supp(A&x(y))

[Tibshirani and Taylor ’12, V. et al '13]



Sensitivity Analysis of the Prediction

y — i(y)is CHR"\ H) and Vy & H, df = tr(Dj(y) where
Di(y) = 7 (O ®7 + AV3,J(5a(y))) " &7
where T = Taxn(y) and X5 (y) a solution such that

Ker [Vi,J(®a(¥))] N T = {0}



Sensitivity Analysis of the Prediction

y — fA(y) is CL(R" and Yy ¢ H, df = tr(Dfi(y) where
Di(y) = ®r(®f &7 + AV3,J((1))) 7
where T = Ty xn(y) ahd X5 (y) a solution such that

Ker [Vi,J(R(y)] N T = {0}

Size ?



Sensitivity Analysis of the Prediction

y — fA(y) is CL(R" and Yy ¢ H, df = tr(Dfi(y) where

Di(y) = @7 (D &1 + AV J(X(r))) " @1

where T = Ta ki (y) ahd X (y)

Ker [Vi,J(R(y)] N T = {0}

Size ? Does it exist ?



Sensitivity Analysis of the Prediction

y — f(y)is CH(R" \ ‘H) and Vy & H, df = tr(Dfi(y) where
DA(y) = ®r(®T®r +AV3J(5a())) 7
where T = Ty xn(y) and X\ (y) a solution such that

Ker [Va4J(a())] N T = {0}

If Jis polyhedral (e.g. |A - |1, |A " |oos -..) OF |A - |12, then
‘H is of zero Lebesgue measure
there is a solution such that Ker [V4,J(%:(y))| N T = {0}




Ingredients of the Proof

Riemmanian geometry — provides closed-form expression
Implicit function theorem — foundation to quantify the Jacobian
O-minimal geometry — excludes pathological cases



Numerical Example



A Case Study: Isotropic Total Variation

1
fa(y) € Argmin |y — dx|3 + A TV(x)

xERP1XP2

TV(x) = |Vx|12 =) \/(Xi+1,j — Xij)? + (Xij+1 — i j)?
i)
TV partly smooth at x € RP for M = {z : supp(Vz) = supp(Vx)}
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SURE(2)(Y) = |Y — a(Y)|3 + 202df — no?

dF = tr (®1(®] ®; — Adliv(dv2,() © T(war))-)V) 0] )

normalization operator—T T— projection by block
I = supp(Vx(y))

Dfi(y) potentially huge p x p — Monte-Carlo estimation

dF'" (z) = (z, Du(y) - 2)

|

computable with a linear system (GMRES)



A Case Study: Isotropic Total Variation

— — — Prediction risk
Closed—form SURE |-
Conf. interval
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Conclusion

Risk estimation <= Sensitivity of the estimator

Practical limitations

— Closed form expression of df unavailable for arbitrary J
—— unsuitable for non-variational methods
—— can be unstable if the model is not identified

Alternative approaches

— Finite difference approximation SURE [Ramani et al. '08]
— lterative Chain Rule SUGAR [Deledalle et al. *14]



Thanks for your attention !

Any questions ?
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