Degrees of Freedom for Partly Smooth Regularizers

Samuel Vaiter CNRS & IMB, Dijon, France

> 2016/07/04 AIMS'16

many denoising methods are parametric

many denoising methods are parametric

parameter selection "by hand"

many denoising methods are parametric

parameter selection "by hand"

automatic parameter selection

Problem Statement

Inverse Problem and Variational Methods

Inverse Problem and Variational Methods

$$\hat{x}_{\lambda}(y) \in \operatorname{Argmin}_{x \in \mathbb{R}^{p}} F(\mathbf{\Phi}x, y) + \lambda J(x)$$

$$\min_{\lambda \in \mathbb{R}_+} \mathsf{R}_{\lambda}(Y) \stackrel{\scriptscriptstyle{\mathsf{def.}}}{=} \mathbb{E}_W[\| \boldsymbol{\Phi} \hat{x}_{\lambda}(Y) - \boldsymbol{\Phi} x_0 \|_2^2]$$

$$\hat{x}_{\lambda}(y) \in \operatorname{Argmin}_{x \in \mathbb{R}^{p}} F(\mathbf{\Phi}_{X}, y) + \lambda J(x)$$

$$\min_{\lambda \in \mathbb{R}_+} \mathsf{R}_{\lambda}(Y) \stackrel{\scriptscriptstyle{\mathsf{def.}}}{=} \mathbb{E}_W[\| \boldsymbol{\Phi} \hat{x}_{\lambda}(Y) - \boldsymbol{\Phi} x_0 \|_2^2]$$

 $\rightarrow x_0$ is unknown

2 issues

 \rightarrow we only have access to one realization of Y

$$\hat{x}_{\lambda}(y) \in \operatorname{Argmin}_{x \in \mathbb{R}^{p}} F(\mathbf{\Phi}x, y) + \lambda J(x)$$

Degrees of Freedom and Stein's Lemma

degrees of freedom (Efron 1986)

$$df = \sum_{i=1}^{n} \frac{1}{\sigma^2} \operatorname{cov}(Y_i, \hat{\mu}_i(Y))$$

Degrees of Freedom and Stein's Lemma

degrees of freedom (Efron 1986)

$$df = \sum_{i=1}^{n} \frac{1}{\sigma^2} \operatorname{cov}(Y_i, \hat{\mu}_i(Y))$$

empirical degrees of freedom

$$\hat{df} = \operatorname{div}(\hat{\mu})(Y) = \operatorname{tr}(D\hat{\mu}(Y))$$

Degrees of Freedom and Stein's Lemma

degrees of freedom (Efron 1986)

$$df = \sum_{i=1}^{n} \frac{1}{\sigma^2} \operatorname{cov}(Y_i, \hat{\mu}_i(Y))$$

empirical degrees of freedom

$$\hat{df} = \operatorname{div}(\hat{\mu})(Y) = \operatorname{tr}(D\hat{\mu}(Y))$$

Stein's lemma (1981)

 $\hat{\mu}$ weakly differentiable with essentially bounded weak derivative

 $\mathbb{E}[\hat{df}] = df$

Stein Unbiased Risk Estimation (SURE)

degrees of freedom (Efron 1986)

$$df = \sum_{i=1}^{n} \frac{1}{\sigma^2} \operatorname{cov}(Y_i, \hat{\mu}_i(Y))$$

empirical degrees of freedom

$$\hat{df} = \operatorname{div}(\hat{\mu})(Y) = \operatorname{tr}(D\hat{\mu}(Y))$$

$$SURE(\hat{\mu})(Y) = \|Y - \hat{\mu}(Y)\|_2^2 + 2\sigma^2 \hat{d}f - n\sigma^2$$

Three Missions

$$\hat{x}_{\lambda}(y) \in \operatorname{Argmin}_{x \in \mathbb{R}^{p}} F(\mathbf{\Phi}x, y) + \lambda J(x)$$

Prove that
$$y \mapsto \hat{\mu}(y) = \mathbf{\Phi} \hat{x}_{\lambda}(y)$$
 is

single-valued weakly differentiable such that we know how to compute $div(\mu)(y)$

Sensitivity Analysis

An Observation

$$\hat{x}_{\lambda}(y) \in \operatorname{Argmin}_{x \in \mathbb{R}^{p}} \frac{1}{2} \| \mathbf{\Phi} x - y \|_{2}^{2} + \lambda J(x)$$

 $\hat{\mu}(y) = \mathbf{\Phi} \hat{x}_{\lambda}(y) \text{ uniquely defined (true when } \nabla^2 F \text{ positive definite)}$ $y \mapsto \hat{\mu}(y) \text{ Lipschitz, hence weakly differentiable}$

An Observation

$$\hat{x}_{\lambda}(y) \in \operatorname{Argmin}_{x \in \mathbb{R}^{p}} \frac{1}{2} \| \mathbf{\Phi} x - y \|_{2}^{2} + \lambda J(x)$$

 $\hat{\mu}(y) = \mathbf{\Phi} \hat{x}_{\lambda}(y) \text{ uniquely defined (true when } \nabla^2 F \text{ positive definite)}$ $y \mapsto \hat{\mu}(y) \text{ Lipschitz, hence weakly differentiable}$

Are we done ?

An Observation

$$\hat{x}_{\lambda}(y) \in \operatorname{Argmin}_{x \in \mathbb{R}^{p}} \frac{1}{2} \| \mathbf{\Phi} x - y \|_{2}^{2} + \lambda J(x)$$

 $\begin{vmatrix} \hat{\mu}(y) = \mathbf{\Phi} \hat{x}_{\lambda}(y) \text{ uniquely defined (true when } \nabla^2 F \text{ positive definite)} \\ y \mapsto \hat{\mu}(y) \text{ Lipschitz, hence weakly differentiable}$

Are we done ?

No, we need a formula for div $(\hat{\mu})(y)$ true a.e. to compute $\mathbb{E}[\hat{df}]$

 \longrightarrow tricky part

$$\hat{x}_{\lambda}(y) = \operatorname*{argmin}_{x \in \mathbb{R}^{p}} F(\mathbf{\Phi}x, y) + \lambda J(x)$$

Let $F(z, y) = ||z - y||_2^2$ and J is C²

$$\hat{x}_{\lambda}(y) = \operatorname*{argmin}_{x \in \mathbb{R}^{p}} F(\mathbf{\Phi}x, y) + \lambda J(x)$$

Let
$$F(z, y) = ||z - y||_2^2$$
 and J is C²

First-order conditions

$$\mathbf{\Phi}^{\top}(\mathbf{\Phi}\hat{x}_{\lambda}(y)-y)+\lambda\nabla J(\hat{x}_{\lambda}(y))=0$$

$$\hat{x}_{\lambda}(y) = \operatorname*{argmin}_{x \in \mathbb{R}^{p}} F(\mathbf{\Phi}x, y) + \lambda J(x)$$

Let
$$F(z, y) = ||z - y||_2^2$$
 and J is C²

First-order conditions

$$\mathbf{\Phi}^{\top}(\mathbf{\Phi}\hat{x}_{\lambda}(y)-y)+\lambda\nabla J(\hat{x}_{\lambda}(y))=0$$

Implicit function theorem

$$D\hat{\mu}(y) = \mathbf{\Phi}\Gamma(y)^{-1}\mathbf{\Phi}^{ op}$$
 where $\Gamma = \mathbf{\Phi}^{ op}\mathbf{\Phi} + \lambda D^2 J$

$$\hat{x}_{\lambda}(y) = \operatorname*{argmin}_{x \in \mathbb{R}^{p}} F(\mathbf{\Phi}x, y) + \lambda J(x)$$

Let
$$F(z, y) = ||z - y||_2^2$$
 and J is C²

First-order conditions

$$\mathbf{\Phi}^{\top}(\mathbf{\Phi}\hat{x}_{\lambda}(y)-y)+\lambda\nabla J(\hat{x}_{\lambda}(y))=0$$

Implicit function theorem

 $D\hat{\mu}(y) = \mathbf{\Phi}\Gamma(y)^{-1}\mathbf{\Phi}^{ op}$ where $\Gamma = \mathbf{\Phi}^{ op}\mathbf{\Phi} + \lambda D^2 J$

non-uniqueness of $\hat{x}_{\lambda}(y)$ Issuesnon-differentiability of Jnon-invertibility of Γ

Partly smooth function [Lewis 2002]

Partly smooth function [Lewis 2002]

Partly smooth function [Lewis 2002]

J restricted to M is C² ∀h ∈ $(T_M x)^{\perp}$, t → J(x + th) not smooth at 0

Partly smooth function [Lewis 2002]

 $\forall h \in (T_{\mathcal{M}}x)^{\perp}, t \mapsto J(x+th)$

$$y \mapsto \hat{\mu}(y) \text{ is } C^{1}(\mathbb{R}^{n} \setminus \mathcal{H}) \text{ and } \forall y \notin \mathcal{H}, \hat{df} = \operatorname{tr}(D\hat{\mu}(y) \text{ where}$$

 $D\hat{\mu}(y) = \mathbf{\Phi}_{T}(\mathbf{\Phi}_{T}^{\top}\mathbf{\Phi}_{T} + \lambda \nabla_{\mathcal{M}}^{2}J(\hat{x}_{\lambda}(y)))^{+}\mathbf{\Phi}_{T}^{\top}$
where $T = \mathcal{T}_{\mathcal{M}}\hat{x}_{\lambda}(y)$ and $\hat{x}_{\lambda}(y)$ a solution such that
 $\operatorname{Ker}\left[\nabla_{\mathcal{M}}^{2}J(\hat{x}_{\lambda}(y))\right] \cap T = \{0\}$

$$y \mapsto \hat{\mu}(y) \text{ is } C^{1}(\mathbb{R}^{n} \setminus \mathcal{H}) \text{ and } \forall y \notin \mathcal{H}, \hat{df} = \operatorname{tr}(D\hat{\mu}(y) \text{ where}$$

 $D\hat{\mu}(y) = \mathbf{\Phi}_{T}(\mathbf{\Phi}_{T}^{\top}\mathbf{\Phi}_{T} + \lambda \nabla_{\mathcal{M}}^{2}J(\hat{x}_{\lambda}(y)))^{+}\mathbf{\Phi}_{T}^{\top}$
where $T = \mathcal{T}_{\mathcal{M}}\hat{x}_{\lambda}(y)$ and $\hat{x}_{\lambda}(y)$ a solution such that
 $\operatorname{Ker}\left[\nabla_{\mathcal{M}}^{2}J(\hat{x}_{\lambda}(y))\right] \cap T = \{0\}$

$$\begin{aligned} & \int (X) = \|AX\|_1 & \hat{df} = \dim \operatorname{Ker} A_{I^c} \\ & \text{where } \operatorname{Ker} [\Phi] \cap \operatorname{Ker} [A_{I^c}] \text{ and } I = \operatorname{supp}(AX) \end{aligned}$$

where Ker $[\mathbf{\Phi}] \cap$ Ker $[A_{I^c}]$ and $I = \text{supp}(A\hat{x}_{\lambda}(y))$

[Tibshirani and Taylor '12, V. et al '13]

$$y \mapsto \hat{\mu}(y) \text{ is } C^{1}(\mathbb{R}^{n} \setminus \mathcal{H}) \text{ and } \forall y \notin \mathcal{H}, \hat{df} = \operatorname{tr}(D\hat{\mu}(y) \text{ where}$$

 $D\hat{\mu}(y) = \mathbf{\Phi}_{T}(\mathbf{\Phi}_{T}^{\top}\mathbf{\Phi}_{T} + \lambda \nabla_{\mathcal{M}}^{2}J(\hat{x}_{\lambda}(y)))^{+}\mathbf{\Phi}_{T}^{\top}$
where $T = \mathcal{T}_{\mathcal{M}}\hat{x}_{\lambda}(y)$ and $\hat{x}_{\lambda}(y)$ a solution such that
 $\operatorname{Ker}\left[\nabla_{\mathcal{M}}^{2}J(\hat{x}_{\lambda}(y))\right] \cap T = \{0\}$

$$y \mapsto \hat{\mu}(y) \text{ is } C^{1}(\mathbb{R}^{n} \setminus \mathcal{H}) \text{ and } \forall y \notin \mathcal{H}, \hat{d}f = \operatorname{tr}(D\hat{\mu}(y) \text{ where}$$

 $D\hat{\mu}(y) = \mathbf{\Phi}_{T}(\mathbf{\Phi}_{T}^{\top}\mathbf{\Phi}_{T} + \lambda \nabla_{\mathcal{M}}^{2}J(\hat{x}_{\lambda}(y)))^{+}\mathbf{\Phi}_{T}^{\top}$
where $T = \mathcal{T}_{\mathcal{M}}\hat{x}_{\lambda}(y)$ and $\hat{x}_{\lambda}(y)$ a solution such that
 $\operatorname{Ker}\left[\nabla_{\mathcal{M}}^{2}J(\hat{x}_{\lambda}(y))\right] \cap T = \{0\}$

Size ?

$$y \mapsto \hat{\mu}(y) \text{ is } C^{1}(\mathbb{R}^{n} \setminus \mathcal{H}) \text{ and } \forall y \notin \mathcal{H}, \, \hat{d}f = \operatorname{tr}(D\hat{\mu}(y) \text{ where}$$
$$D\hat{\mu}(y) = \Phi_{T}(\Phi_{T}^{\top} \Phi_{T} + \lambda \nabla_{\mathcal{M}}^{2} J(\hat{x}_{\lambda}(y)))^{+} \Phi_{T}^{\top}$$
where $T = \mathcal{T}_{\mathcal{M}} \hat{x}_{\lambda}(y)$ and $\hat{x}_{\lambda}(y)$ a solution such that
$$\operatorname{Ker} \left[\nabla_{\mathcal{M}}^{2} J(\hat{x}_{\lambda}(y)) \right] \cap T = \{0\}$$
Size ? Does it exist ?

$$y \mapsto \hat{\mu}(y) \text{ is } C^{1}(\mathbb{R}^{n} \setminus \mathcal{H}) \text{ and } \forall y \notin \mathcal{H}, \hat{df} = \operatorname{tr}(D\hat{\mu}(y) \text{ where}$$

 $D\hat{\mu}(y) = \mathbf{\Phi}_{T}(\mathbf{\Phi}_{T}^{\top}\mathbf{\Phi}_{T} + \lambda \nabla_{\mathcal{M}}^{2}J(\hat{x}_{\lambda}(y)))^{+}\mathbf{\Phi}_{T}^{\top}$
where $T = \mathcal{T}_{\mathcal{M}}\hat{x}_{\lambda}(y)$ and $\hat{x}_{\lambda}(y)$ a solution such that
 $\operatorname{Ker}\left[\nabla_{\mathcal{M}}^{2}J(\hat{x}_{\lambda}(y))\right] \cap T = \{0\}$

If *J* is polyhedral (e.g. $||A \cdot ||_1$, $||A \cdot ||_\infty$, ...) or $||A \cdot ||_{1,2}$, then \mathcal{H} is of zero Lebesgue measure there is a solution such that Ker $\left[\nabla_{\mathcal{M}}^2 J(\hat{x}_\lambda(y))\right] \cap T = \{0\}$

Ingredients of the Proof

Riemmanian geometry \longrightarrow provides closed-form expression Implicit function theorem \longrightarrow foundation to quantify the Jacobian O-minimal geometry \longrightarrow excludes pathological cases

Numerical Example

$$\hat{x}_{\lambda}(y) \in \operatorname{Argmin}_{x \in \mathbb{R}^{p_1 \times p_2}} \frac{1}{2} \|y - \mathbf{\Phi}x\|_2^2 + \lambda \operatorname{TV}(x)$$

$$\mathsf{TV}(x) = \|\nabla x\|_{1,2} = \sum_{i,j} \sqrt{(x_{i+1,j} - x_{i,j})^2 + (x_{i,j+1} - x_{i,j})^2}$$

TV partly smooth at $x \in \mathbb{R}^p$ for $\mathcal{M} = \{z : \operatorname{supp}(\nabla z) = \operatorname{supp}(\nabla x)\}$

$$SURE(\hat{\mu})(Y) = \|Y - \hat{\mu}(Y)\|_{2}^{2} + 2\sigma^{2}\hat{d}f - n\sigma^{2}$$
$$\hat{d}f = tr\left(\Phi_{I}(\Phi_{I}^{\top}\Phi_{I} - \lambda \operatorname{div}(\delta_{\nabla\hat{x}_{\lambda}(y)} \circ \Pi_{(\nabla\hat{x}_{\lambda}(y))^{\perp}})\nabla)^{+}\Phi_{I}^{\top}\right)$$
$$normalization operator \begin{tabular}{l} & & \\ I = \operatorname{supp}(\nabla\hat{x}_{\lambda}(y)) \end{array}$$

$$SURE(\hat{\mu})(Y) = \|Y - \hat{\mu}(Y)\|_{2}^{2} + 2\sigma^{2}\hat{d}f - n\sigma^{2}$$
$$\hat{d}f = tr\left(\Phi_{I}(\Phi_{I}^{\top}\Phi_{I} - \lambda \operatorname{div}(\delta_{\nabla\hat{x}_{\lambda}(y)} \circ \Pi_{(\nabla\hat{x}_{\lambda}(y))^{\perp}})\nabla)^{+}\Phi_{I}^{\top}\right)$$
$$normalization operator \begin{tabular}{l} & & \\ I = \operatorname{supp}(\nabla\hat{x}_{\lambda}(y)) \end{array}$$

 $D\hat{\mu}(y)$ potentially huge $p \times p \longrightarrow$ Monte-Carlo estimation

$$\hat{df}^{MC}(z) = \langle z, D\mu(y) \cdot z \rangle$$

$$SURE(\hat{\mu})(Y) = \|Y - \hat{\mu}(Y)\|_{2}^{2} + 2\sigma^{2}\hat{d}f - n\sigma^{2}$$
$$\hat{d}f = tr\left(\Phi_{I}(\Phi_{I}^{\top}\Phi_{I} - \lambda \operatorname{div}(\delta_{\nabla\hat{x}_{\lambda}(y)} \circ \Pi_{(\nabla\hat{x}_{\lambda}(y))^{\perp}})\nabla)^{+}\Phi_{I}^{\top}\right)$$
$$normalization operator \begin{tabular}{l} & & \\ I = \operatorname{supp}(\nabla\hat{x}_{\lambda}(y)) \end{array}$$

 $D\hat{\mu}(y)$ potentially huge $p imes p \longrightarrow$ Monte-Carlo estimation

$$\hat{df}^{MC}(z) = \langle z, D\mu(y) \cdot z \rangle$$

computable with a linear system (GMRES)

 $\hat{x}_{\lambda}(y)$

*X*₀

Conclusion

Risk estimation \Longleftrightarrow Sensitivity of the estimator

Conclusion

Risk estimation \Longleftrightarrow Sensitivity of the estimator

Practical limitations

- \longrightarrow Closed form expression of \hat{df} unavailable for arbitrary J
- \longrightarrow unsuitable for non-variational methods
- \longrightarrow can be unstable if the model is not identified

Conclusion

Risk estimation \Longleftrightarrow Sensitivity of the estimator

Practical limitations

- \longrightarrow Closed form expression of \hat{df} unavailable for arbitrary J
- \longrightarrow unsuitable for non-variational methods
- \longrightarrow can be unstable if the model is not identified

Alternative approaches

- \longrightarrow Finite difference approximation SURE [Ramani et al. '08]
- \longrightarrow Iterative Chain Rule SUGAR [Deledalle et al. '14]

Thanks for your attention !

Any questions ?

Joint work with C. Deledalle, C. Dossal, J. Fadili and G. Peyré *The Degrees of Freedom of Partly Smooth Regularizers* Annals of the Institute of Statistical Mathematics (to appear), 2016