Degrees of Freedom for Partly Smooth Regularizers

Samuel Vaiter
CNRS \& IMB, Dijon, France

2016/07/04
AIMS'16

many denoising methods are parametric

many denoising methods are parametric

parameter selection
"by hand"

many denoising methods are parametric

parameter selection "by hand"

quadratic error

Problem Statement

Inverse Problem and Variational Methods

Inverse Problem and Variational Methods

observations

$$
\mathbb{R}^{n}
$$

degradation operator

$$
\mathbb{R}^{p} \rightarrow \mathbb{R}^{n}
$$

$$
Y=\boldsymbol{\Phi} x_{0}+W
$$

\qquad

ground truth

$$
\mathbb{R}^{p}
$$

Variational methods

Our Goal

$$
\hat{x}_{\lambda}(y) \in \underset{x \in \mathbb{R}^{p}}{\operatorname{Argmin}} F(\boldsymbol{\Phi} x, y)+\lambda J(x)
$$

$\min _{\lambda \in \mathbb{R}_{+}} R_{\lambda}(Y) \stackrel{\text { det }}{=} \mathbb{E}_{W}\left[\left\|\boldsymbol{\Phi} \hat{\boldsymbol{X}}_{\lambda}(Y)-\boldsymbol{\Phi} x_{0}\right\|_{2}^{2}\right]$

Our Goal

$$
\hat{x}_{\lambda}(y) \in \underset{x \in \mathbb{R}^{p}}{\operatorname{Argmin}} F\left(\boldsymbol{\Phi}_{x}, y\right)+\lambda J(x)
$$

$\min _{\lambda \in \mathbb{R}_{+}} \mathrm{R}_{\lambda}(Y) \stackrel{\text { def. }}{=} \mathbb{E}_{W}\left[\left\|\boldsymbol{\Phi} \hat{x}_{\lambda}(Y)-\boldsymbol{\Phi} x_{0}\right\|_{2}^{2}\right]$
$\longrightarrow x_{0}$ is unknown
2 issues
\longrightarrow we only have access to one realization of Y

Our Goal

$$
\hat{x}_{\lambda}(y) \in \underset{x \in \mathbb{R}^{p}}{\operatorname{Argmin}} F(\boldsymbol{\Phi} x, y)+\lambda J(x)
$$

$$
\min _{\lambda \in \mathbb{R}_{+}} \mathrm{R}_{\lambda}(Y) \stackrel{\text { def. }}{=} \mathbb{E}_{W}\left[\left\|\boldsymbol{\Phi} \hat{x}_{\lambda}(Y)-\boldsymbol{\Phi} x_{0}\right\|_{2}^{2}\right]
$$

$\longrightarrow x_{0}$ is unknown
2 issues
\longrightarrow we only have access to one realization of Y

$$
\mathfrak{z}
$$

create an estimator of $\mathrm{R}_{\lambda}(Y)$

Degrees of Freedom and Stein's Lemma

degrees of freedom
(Efron 1986)

$$
d f=\sum_{i=1}^{n} \frac{1}{\sigma^{2}} \operatorname{cov}\left(Y_{i}, \hat{\mu}_{i}(Y)\right)
$$

Degrees of Freedom and Stein's Lemma

degrees of freedom
(Efron 1986)
empirical
degrees of freedom

$$
d f=\sum_{i=1}^{n} \frac{1}{\sigma^{2}} \operatorname{cov}\left(Y_{i}, \hat{\mu}_{i}(Y)\right)
$$

$$
\hat{d f}=\operatorname{div}(\hat{\mu})(Y)=\operatorname{tr}(D \hat{\mu}(Y))
$$

Degrees of Freedom and Stein's Lemma

degrees of freedom (Efron 1986)

$$
d f=\sum_{i=1}^{n} \frac{1}{\sigma^{2}} \operatorname{cov}\left(Y_{i}, \hat{\mu}_{i}(Y)\right)
$$

empirical
degrees of freedom

$$
\hat{d f}=\operatorname{div}(\hat{\mu})(Y)=\operatorname{tr}(D \hat{\mu}(Y))
$$

Stein's lemma (1981)
$\hat{\mu}$ weakly differentiable with essentially bounded weak derivative

$$
\sqrt{v}
$$

$$
\mathbb{E}[\hat{d f}]=d f
$$

Stein Unbiased Risk Estimation (SURE)

degrees of freedom (Efron 1986)

$$
d f=\sum_{i=1}^{n} \frac{1}{\sigma^{2}} \operatorname{cov}\left(Y_{i}, \hat{\mu}_{i}(Y)\right)
$$

empirical
degrees of freedom

$$
\hat{d f}=\operatorname{div}(\hat{\mu})(Y)=\operatorname{tr}(D \hat{\mu}(Y))
$$

$$
\operatorname{SURE}(\hat{\mu})(Y)=\|Y-\hat{\mu}(Y)\|_{2}^{2}+2 \sigma^{2} \hat{d f}-n \sigma^{2}
$$

$\hat{\mu}$ weakly differentiable with essentially bounded weak derivative

$$
\begin{aligned}
& \mathbb{E}[\operatorname{URE}(\hat{\mu})(Y)]=\mathbb{E}\left[\hat{\mu}(Y)-\boldsymbol{\Phi}_{0}\left[\tilde{2}^{2}\right]\right.
\end{aligned}
$$

Three Missions

$$
\hat{x}_{\lambda}(y) \in \underset{x \in \mathbb{R}^{p}}{\operatorname{Argmin}} F(\boldsymbol{\Phi} x, y)+\lambda J(x)
$$

Prove that $y \mapsto \hat{\mu}(y)=\boldsymbol{\Phi} \hat{X}_{\lambda}(y)$ is
single-valued
weakly differentiable
such that we know how to compute $\operatorname{div}(\mu)(y)$

Sensitivity Analysis

An Observation

$$
\hat{x}_{\lambda}(y) \in \underset{x \in \mathbb{R}^{p}}{\operatorname{Argmin}} \frac{1}{2}\|\boldsymbol{\Phi} x-y\|_{2}^{2}+\lambda J(x)
$$

$\hat{\mu}(y)=\boldsymbol{\Phi} \hat{X}_{\lambda}(y)$ uniquely defined (true when $\nabla^{2} F$ positive definite)
$y \mapsto \hat{\mu}(y)$ Lipschitz, hence weakly differentiable

An Observation

$$
\hat{x}_{\lambda}(y) \in \underset{x \in \mathbb{R}^{p}}{\operatorname{Argmin}} \frac{1}{2}\|\boldsymbol{\Phi} x-y\|_{2}^{2}+\lambda J(x)
$$

$\hat{\mu}(y)=\boldsymbol{\Phi} \hat{x}_{\lambda}(y)$ uniquely defined (true when $\nabla^{2} F$ positive definite)
$y \mapsto \hat{\mu}(y)$ Lipschitz, hence weakly differentiable

Are we done?

An Observation

$$
\hat{x}_{\lambda}(y) \in \underset{x \in \mathbb{R}^{p}}{\operatorname{Argmin}} \frac{1}{2}\|\boldsymbol{\Phi} x-y\|_{2}^{2}+\lambda J(x)
$$

$\hat{\mu}(y)=\boldsymbol{\Phi} \hat{x}_{\lambda}(y)$ uniquely defined (true when $\nabla^{2} F$ positive definite)
$y \mapsto \hat{\mu}(y)$ Lipschitz, hence weakly differentiable

Are we done?

No, we need a formula for $\operatorname{div}(\hat{\mu})(y)$ true a.e. to compute $\mathbb{E}[\hat{d f}]$

Simple Example

$$
\hat{x}_{\lambda}(y)=\underset{x \in \mathbb{R}^{p}}{\operatorname{argmin}} F(\boldsymbol{\Phi} x, y)+\lambda J(x)
$$

Let $F(z, y)=\|z-y\|_{2}^{2}$ and J is C^{2}

Simple Example

$$
\hat{x}_{\lambda}(y)=\underset{x \in \mathbb{R}^{p}}{\operatorname{argmin}} F(\boldsymbol{\Phi} x, y)+\lambda J(x)
$$

Let $F(z, y)=\|z-y\|_{2}^{2}$ and J is C^{2}
First-order conditions

$$
\boldsymbol{\Phi}^{\top}\left(\boldsymbol{\Phi} \hat{x}_{\lambda}(y)-y\right)+\lambda \nabla J\left(\hat{x}_{\lambda}(y)\right)=0
$$

Simple Example

$$
\hat{x}_{\lambda}(y)=\underset{x \in \mathbb{R}^{P}}{\operatorname{argmin}} F\left(\boldsymbol{\Phi}_{x}, y\right)+\lambda J(x)
$$

Let $F(z, y)=\|z-y\|_{2}^{2}$ and J is C^{2}
First-order conditions

$$
\boldsymbol{\Phi}^{\top}\left(\boldsymbol{\Phi} \hat{x}_{\lambda}(y)-y\right)+\lambda \nabla J\left(\hat{x}_{\lambda}(y)\right)=0
$$

Implicit function theorem

$$
\left.D \hat{\mu}(y)=\boldsymbol{\Phi} \Gamma(y)^{-1} \boldsymbol{\Phi}^{\top} \quad \text { where } \quad \Gamma=\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}+\lambda D^{2}\right\rfloor
$$

Simple Example

$$
\hat{x}_{\lambda}(y)=\underset{x \in \mathbb{R}^{p}}{\operatorname{argmin}} F(\boldsymbol{\Phi} x, y)+\lambda J(x)
$$

Let $F(z, y)=\|z-y\|_{2}^{2}$ and J is C^{2}
First-order conditions

$$
\boldsymbol{\Phi}^{\top}\left(\boldsymbol{\Phi} \hat{x}_{\lambda}(y)-y\right)+\lambda \nabla J\left(\hat{x}_{\lambda}(y)\right)=0
$$

Implicit function theorem

$$
\left.D \hat{\mu}(y)=\boldsymbol{\Phi} \Gamma(y)^{-1} \boldsymbol{\Phi}^{\top} \quad \text { where } \quad \Gamma=\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}+\lambda D^{2}\right\rfloor
$$

Assumption on the Regularizer

Partly smooth function [Lewis 2002]

Assumption on the Regularizer

Partly smooth function [Lewis 2002]

Assumption on the Regularizer

Partly smooth function [Lewis 2002]

Assumption on the Regularizer

Partly smooth function [Lewis 2002]

J restricted to \mathcal{M} is C^{2}
$\forall h \in\left(T_{\mathcal{M} x}\right)^{\perp}, t \mapsto J(x+t h)$ not smooth at 0
$\|\cdot\|_{1}$
same support
same jump
$\|\cdot\|_{\infty}$ same saturation

Sensitivity Analysis of the Prediction

$y \mapsto \hat{\mu}(y)$ is $C^{1}\left(\mathbb{R}^{n} \backslash \mathcal{H}\right)$ and $\forall y \notin \mathcal{H}, \hat{d f}=\operatorname{tr}(D \hat{\mu}(y)$ where

$$
D \hat{\mu}(y)=\boldsymbol{\Phi}_{T}\left(\boldsymbol{\Phi}_{T}^{\top} \boldsymbol{\Phi}_{T}+\lambda \nabla_{\mathcal{M}}^{2} J\left(\hat{x}_{\lambda}(y)\right)\right)^{+} \boldsymbol{\Phi}_{T}^{\top}
$$

where $T=\mathcal{T}_{\mathcal{M}} \hat{x}_{\lambda}(y)$ and $\hat{x}_{\lambda}(y)$ a solution such that

$$
\operatorname{Ker}\left[\nabla_{\mathcal{M}}^{2} J\left(\hat{x}_{\lambda}(y)\right)\right] \cap T=\{0\}
$$

Sensitivity Analysis of the Prediction

$y \mapsto \hat{\mu}(y)$ is $\mathrm{C}^{1}\left(\mathbb{R}^{n} \backslash \mathcal{H}\right)$ and $\forall y \notin \mathcal{H}, \hat{d f}=\operatorname{tr}(D \hat{\mu}(y)$ where

$$
D \hat{\mu}(y)=\boldsymbol{\Phi}_{T}\left(\boldsymbol{\Phi}_{T}^{\top} \boldsymbol{\Phi}_{T}+\lambda \nabla_{\mathcal{M}}^{2} J\left(\hat{x}_{\lambda}(y)\right)\right)^{+} \boldsymbol{\Phi}_{T}^{\top}
$$

where $T=\mathcal{T}_{\mathcal{M}} \hat{x}_{\lambda}(y)$ and $\hat{x}_{\lambda}(y)$ a solution such that

$$
\operatorname{Ker}\left[\nabla_{\mathcal{M}}^{2} J\left(\hat{x}_{\lambda}(y)\right)\right] \cap T=\{0\}
$$

$$
J(x)=\|A x\|_{1}
$$

$$
\hat{d f}=\operatorname{dim} \operatorname{Ker} A_{I^{c}}
$$

where $\operatorname{Ker}[\Phi] \cap \operatorname{Ker}\left[A_{I^{c}}\right]$ and $I=\operatorname{supp}\left(A \hat{x}_{\lambda}(y)\right)$
[Tibshirani and Taylor '12, V. et al '13]

Sensitivity Analysis of the Prediction

$y \mapsto \hat{\mu}(y)$ is $C^{1}\left(\mathbb{R}^{n} \backslash \mathcal{H}\right)$ and $\forall y \notin \mathcal{H}, \hat{d f}=\operatorname{tr}(D \hat{\mu}(y)$ where

$$
D \hat{\mu}(y)=\boldsymbol{\Phi}_{T}\left(\boldsymbol{\Phi}_{T}^{\top} \boldsymbol{\Phi}_{T}+\lambda \nabla_{\mathcal{M}}^{2} J\left(\hat{x}_{\lambda}(y)\right)\right)^{+} \boldsymbol{\Phi}_{T}^{\top}
$$

where $T=\mathcal{T}_{\mathcal{M}} \hat{x}_{\lambda}(y)$ and $\hat{x}_{\lambda}(y)$ a solution such that

$$
\operatorname{Ker}\left[\nabla_{\mathcal{M}}^{2} J\left(\hat{x}_{\lambda}(y)\right)\right] \cap T=\{0\}
$$

Sensitivity Analysis of the Prediction

$y \mapsto \hat{\mu}(y)$ is $C^{1}\left(\mathbb{R}^{n} \mathcal{H}\right)$ and $\forall y \notin \mathcal{H}$, df $=\operatorname{tr}(D \hat{\mu}(y)$ where

$$
D \hat{\mu}(y)=\boldsymbol{\Phi}_{T}\left(\boldsymbol{\Phi} \boldsymbol{\Phi}_{T}^{\top} \boldsymbol{\Phi}_{T}+\lambda \nabla_{\mathcal{M}}^{2} J\left(\hat{x}_{\lambda}(y)\right)\right)^{+} \boldsymbol{\Phi}_{T}^{\top}
$$

where $T=\mathcal{T}_{\mathcal{M}} \hat{x}_{\lambda}(y)$ and $\hat{\chi}_{\lambda}(y)$ a solution such that

$$
\operatorname{Ker}\left[\nabla_{\mathcal{M}}^{2} J\left(\hat{x}_{\lambda}(y)\right)\right] \cap T=\{0\}
$$

Size?

Sensitivity Analysis of the Prediction

$y \mapsto \hat{\mu}(y)$ is $\mathrm{C}^{1}\left(\mathbb{R}^{n} \mathcal{H}\right)$ and $\forall y \notin \mathcal{H}, \hat{d f}=\operatorname{tr}(D \hat{\mu}(y)$ where

$$
D \hat{\mu}(y)=\boldsymbol{\Phi}_{T}\left(\boldsymbol{\Phi} \boldsymbol{\top} \boldsymbol{\Phi}_{T}+\lambda \nabla_{\mathcal{M}}^{2} J\left(\hat{x}_{\lambda}(y)\right)\right)^{+} \boldsymbol{\Phi}_{T}^{\top}
$$

where $T=\mathcal{T}_{\mathcal{M}} \hat{x}_{\lambda}(y)$ and $\hat{x}_{\lambda}(y)$ solution such that
$\operatorname{Ker}\left[\nabla_{\mathcal{M}}^{2} J\left(\hat{x}_{\lambda}(y)\right)\right] \cap T=\{0\}$

Size?
Does it exist?

Sensitivity Analysis of the Prediction

$y \mapsto \hat{\mu}(y)$ is $C^{1}\left(\mathbb{R}^{n} \backslash \mathcal{H}\right)$ and $\forall y \notin \mathcal{H}, \hat{d f}=\operatorname{tr}(D \hat{\mu}(y)$ where

$$
D \hat{\mu}(y)=\boldsymbol{\Phi}_{T}\left(\boldsymbol{\Phi}_{T}^{\top} \boldsymbol{\Phi}_{T}+\lambda \nabla_{\mathcal{M}}^{2} J\left(\hat{x}_{\lambda}(y)\right)\right)^{+} \boldsymbol{\Phi}_{T}^{\top}
$$

where $T=\mathcal{T}_{\mathcal{M}} \hat{x}_{\lambda}(y)$ and $\hat{x}_{\lambda}(y)$ a solution such that

$$
\operatorname{Ker}\left[\nabla_{\mathcal{M}}^{2} J\left(\hat{x}_{\lambda}(y)\right)\right] \cap T=\{0\}
$$

If J is polyhedral (e.g. $\|A \cdot\|_{1},\|A \cdot\|_{\infty}, \ldots$) or $\|A \cdot\|_{1,2}$, then \mathcal{H} is of zero Lebesgue measure there is a solution such that $\operatorname{Ker}\left[\nabla_{\mathcal{M}}^{2} J\left(\hat{x}_{\lambda}(y)\right)\right] \cap T=\{0\}$

Ingredients of the Proof

Riemmanian geometry \longrightarrow provides closed-form expression Implicit function theorem \longrightarrow foundation to quantify the Jacobian

O-minimal geometry \longrightarrow excludes pathological cases

Numerical Example

A Case Study: Isotropic Total Variation

$$
\hat{x}_{\lambda}(y) \in \underset{x \in \mathbb{R}_{1} \times p_{2}}{\operatorname{Argmin}} \frac{1}{2}\|y-\boldsymbol{\Phi} x\|_{2}^{2}+\lambda \operatorname{TV}(x)
$$

$$
\mathrm{TV}(x)=\|\nabla x\|_{1,2}=\sum_{i, j} \sqrt{\left(x_{i+1, j}-x_{i, j}\right)^{2}+\left(x_{i, j+1}-x_{i, j}\right)^{2}}
$$

TV partly smooth at $x \in \mathbb{R}^{p}$ for $\mathcal{M}=\{z: \operatorname{supp}(\nabla z)=\operatorname{supp}(\nabla x)\}$

A Case Study: Isotropic Total Variation

$$
\begin{gathered}
\operatorname{SURE}(\hat{\mu})(Y)=\|Y-\hat{\mu}(Y)\|_{2}^{2}+2 \sigma^{2} \hat{d f}-n \sigma^{2} \\
\hat{d f}=\operatorname{tr}\left(\boldsymbol{\Phi}_{I}\left(\boldsymbol{\Phi}_{I}^{\top} \boldsymbol{\Phi}_{I}-\lambda \operatorname{div}\left(\delta_{\nabla \hat{x}_{\lambda}(y)} \circ \Pi_{\left(\nabla \hat{x}_{\lambda}(y)\right)^{+}}\right) \nabla\right)^{+} \boldsymbol{\Phi}_{I}^{\top}\right)
\end{gathered}
$$

$$
\text { normalization operator } \downarrow \quad \downarrow \text { projection by block }
$$

$$
I=\operatorname{supp}\left(\nabla \hat{x}_{\lambda}(y)\right)
$$

A Case Study: Isotropic Total Variation

$$
\begin{gathered}
\operatorname{SURE}(\hat{\mu})(Y)=\|Y-\hat{\mu}(Y)\|_{2}^{2}+2 \sigma^{2} \hat{d f}-n \sigma^{2} \\
\hat{d f}=\operatorname{tr}\left(\boldsymbol{\Phi}_{I}\left(\boldsymbol{\Phi}_{I}^{\top} \boldsymbol{\Phi}_{I}-\lambda \operatorname{div}\left(\delta_{\nabla \hat{\nabla}_{\lambda}(y)} \circ \Pi_{\left.\left(\nabla \hat{\chi}_{\lambda}(y)\right)^{\perp}\right)}\right) \nabla\right)^{+} \boldsymbol{\Phi}_{I}^{\top}\right) \\
\text { normalization operator } \uparrow \quad\llcorner\text { projection by block } \\
I=\operatorname{supp}\left(\nabla \hat{x}_{\lambda}(y)\right)
\end{gathered}
$$

$D \hat{\mu}(y)$ potentially huge $p \times p \longrightarrow$ Monte-Carlo estimation

$$
\hat{d f}^{\mathrm{MC}}(z)=\langle z, D \mu(y) \cdot z\rangle
$$

A Case Study: Isotropic Total Variation

$$
\begin{aligned}
& \operatorname{SURE}(\hat{\mu})(Y)=\|Y-\hat{\mu}(Y)\|_{2}^{2}+2 \sigma^{2} \hat{d f}-n \sigma^{2} \\
& \hat{d f}=\operatorname{tr}\left(\boldsymbol{\Phi}_{I}\left(\boldsymbol{\Phi}_{I}^{\top} \boldsymbol{\Phi}_{I}-\lambda \operatorname{div}\left(\delta_{\nabla \hat{\chi}_{\lambda}(y)} \circ \Pi_{\left(\nabla \hat{x}_{\lambda}(y)\right)^{\perp}}\right) \nabla\right)^{+} \boldsymbol{\Phi}_{I}^{\top}\right) \\
& \text { normalization operator } \downarrow \quad ~ \quad \text { projection by block } \\
& I=\operatorname{supp}\left(\nabla \hat{x}_{\lambda}(y)\right)
\end{aligned}
$$

$D \hat{\mu}(y)$ potentially huge $p \times p \longrightarrow$ Monte-Carlo estimation

$$
\hat{d f}^{\mathrm{MC}}(z)=\langle z, D \mu(y) \cdot z\rangle
$$

computable with a linear system (GMRES)

A Case Study: Isotropic Total Variation

x_{0}

y

$\hat{x}_{\lambda}(y)$

Conclusion

Risk estimation \Longleftrightarrow Sensitivity of the estimator

Conclusion

Risk estimation \Longleftrightarrow Sensitivity of the estimator

Practical limitations

\longrightarrow Closed form expression of $\hat{d f}$ unavailable for arbitrary J
\longrightarrow unsuitable for non-variational methods
\longrightarrow can be unstable if the model is not identified

Conclusion

Risk estimation \Longleftrightarrow Sensitivity of the estimator

Practical limitations

\longrightarrow Closed form expression of $\hat{d f}$ unavailable for arbitrary J
\longrightarrow unsuitable for non-variational methods
\longrightarrow can be unstable if the model is not identified

Alternative approaches
\longrightarrow Finite difference approximation SURE [Ramani et al. '08]
\longrightarrow Iterative Chain Rule SUGAR [Deledalle et al. '14]

Thanks for your attention !

Any questions ?

Joint work with C. Deledalle, C. Dossal, J. Fadili and G. Peyré
The Degrees of Freedom of Partly Smooth Regularizers Annals of the Institute of Statistical Mathematics (to appear), 2016

