(Automatic) Iterative Differentiation: some old (& new) results

Samuel Vaitel’, CNRS, Université Cote d'Azur samuel.vaiter@cnrs.fr

November 6th, 2023 @Séminaire SPO, IHP

Joint works with Jérome Bolte and Edouard Pauwels

Gradients/Jacobian everywhere

First order information

1. Gradient descent
Xe1 = X — DIV (x) (GD)

f a simple function, a neural network, ...

2. Newton's root finding
Jacr(xe)(Xeq1 — x¢) = —F(xe) (NEWTON)

f a vector field, (potentially itself a first order one)

Gradients/Jacobian everywhere

3. Bilevel optimization (hyperparameter optimization, games)

min h(x) = f(y*(x)) subject to y*(x) € argmin, g(x,y)

— Generic hypergradient descent (chain rule)
Xe41 = x¢ — D) Jacy» (x) T VF(y*(x)) (HGD)
4. Implicit model (e.g., Deep Equilibrium Networks, parametric fixed point),

f(x*,y) =x* (DEQ)

How to compute Vf(x) (or Jacs(x)) on a computer?

The “obvious” answer: finite differences

For £ > 0 small enough, Simple to implement

f/(X) N f(X-+—E)-— f(X) 45‘[& f(X) def diff(f, x, eps=le-5):
~ = A¢

c return (£(x + eps) - f(x)) / eps

Proposition A.f(x) has a O(e)
approximation error of f/(x).

The “obvious” answer: finite differences

For £ > 0 small enough, Simple to implement

f/(X) N f(X-+—E)-— f(X) 45‘[& f(X) def diff(f, x, eps=le-5):
~ = A¢

c return (£(x + eps) - f(x)) / eps

Proposition A.f(x) has a O(e)
approximation error of f/(x).

Are we done yet?

The “obvious” answer: finite differences

For £ > 0 small enough, Simple to implement

f/(X) N f(X-+—E)-— f(X) 45‘[& f(X) def diff(f, x, eps=le-5):
~ = A¢

c return (£(x + eps) - f(x)) / eps

Proposition A.f(x) has a O(e)
approximation error of f/(x).

Are we done yet?

Two shortcomings:

1. round-off

2. dimensionality scaling

Shortcoming 1: round-off and truncation

1 A
10 truncation error

10714 10712 10710 1078 1076 104 1072 100

Shortcoming 2: linear complexity w.r.t dimensions

f:R" =R
2 calls
f(x + Ahey) — f(x)
Ah
Vi(x) ~ : n elements
f(x + Ahe,) — f(x)
Ah
Linear cost:

Cost(Vf) = 2n - Cost(f)

Automatic Differentiation?

Could you explain me what is automatic differentiation? | heard the term backpropagation
in multiple papers but how does it work?

Automatic differentiation (AD) is a method faEcomputing the derivatives gba function with @7 &

respect to its input variables. It is often used in machine learning algorithms, particularly in

the training of neural networks, where it is known as backpropagation.

In backpropagation, the error in the predicted output of the neural network i€ propagated

backwards through the network, adjusting the weights of the connections between

neurons in order to minimize the error. This is done using t calculus, which

allows the derivatives of the error with respect to the network's weights to be calculated.

AD algorithms use the structure of th€.computational graph which represents the
sequence of operations performed by the function, tompute the derivatives.

This allows for the calculation of derivatives even for complex functions with a large

number of operations and input variables.

Overall, automatic differentiation is a powerful tool for optimizing machine learning
algorithms and allows for efficient training of complex models. Chat with chatGPT

Automatic Differentiation (AD) as a blackbox

Autodiff acts on computer programs [Wengert '64, Linnainmaa '70]

f(x) - '(x)

? ?

program fun — AD —— program dfun

[Elliot 2018]: Bijection between composition of augmented programs and composition
of differentiable functions

AD is “just” the chain rule (it's not)

Constant complexity of AD

f:RPF >R

Finite difference cost
Cost(Vf) =2p - Cost(f) linear in p
Automatic differentiation cost [Baur & Strassen '83]

Cost(Vf) <5 - Cost(f) constant in p

Computational graph (feed-forward)

Composition of functions (fo : RP =R™ — R™ ... f3:R™ — R™ =R")

f=fhoffohofz : RP - R"

Computational graph

Chain rule

— Jacg, (ws)Jacg, () Jacy, (w1)Jacs, (wo)

al _ Owy 0w, Ows 0wy
Ox 0

10

Computational graph (feed-forward)

Composition of functions (fo : RP =R™ — R™ ... f3:R™ — R™ =R")

f=fhoffohofz : RP - R"

Computational graph

. fo /\\ﬁ,/\\ﬁ_,m fs
_/ _/
Chain rule

dy 0wy Ow. Ows dwy
Ox N aWO 0 0 8W3

= Jacy,(ws)Jacy, (w-)Jacy (w1)Jace (wo)
How to compute this product?

10

f=foofiofyofs:RP R fo Q i) B
N

Jacobian-vector products (JVPs)

Jacs(x) = (JaCf(X)e]_ JaCf(X)ep) = need p JVPs (column-per-column)

Chain rule for JVPs

Jacr(x)ex = Jacg(ws) [Jacs (1) {Jacq (w1) (Jacg (wo)ex) }]

right-to-left multiplication (forward wy — wi — > — w3 — wy)

Cost of p JVPs: p>3 o ninit1 O(p3) if nj = p for i # 4

11

Reverse mode (i.e., Backpropagation)

f=foohohofs :RP - R" @LQ f f2 o w3)—>f3

Vector-Jacobian products (VJPs)

Jacr(x) = (elTJacf(x) eIJaq(x)) = need n VJPs (row-by-row)

Chain rule for VJPs

EjJace(x) = [{(ElJacg(ws)) Jacy, (1)} Jacy (w1)] Jack (wo)

left-to-right multiplication (reverse ws — wz — w> — wi — wp)

Cost of n VJPs: ”Z?:o ninj41 O(p?) if nj = p for i # 4

12

This talk

Trying to make sense of

def forward_backward(alpha, prox_f, grad_g, xO0, max_iter):

0 x = x0

—_— for _ in range (max_iter):
dalpha x = prox_f(x - alphax*grad_g(x), alpha)

return x

and what happens when

max_iter — +oc

13

Iterative differentiation

Fixed point operator F : R” x RP — R"
Parametric iterative algorithm

xO@) eR
xe41(0) = F(x(0),0)

Theorem (Fixed-point)
If for all 8, x — F(x,) is p-Lipschitz with p < 1,

lim x¢(0) = Fix F(-,0) = x(0).

t—-4o00

14

15

autodiff

- Jacy, (0)

15

autodiff

derivative?

- Jac,, ()

limit?

s 7777

15

A favorable case: “contractive” gradient

Smooth iterations: F € C? and x¢11(0) = F(x:(6), 0).

Piggyback recursion (total derivative)

Jacy,,,(0) = 01F (x¢(0), 0) Jacy,(0) + 02F (x(0), 6)

Theorem ([Gilbert 92, Prop. 1])
If F is p-Lipschitz (p < 1) and 0 ,..(01F) < 1, then

lim Jac,,(0) = Jacz(0) = Jacim,_, .. x.(?)

t—+400

16

A favorable case: “contractive” gradient

Smooth iterations: F € C? and x¢11(0) = F(x:(6), 0).

Piggyback recursion (total derivative)

Jacy,,,(0) = 01F (x¢(0), 0) Jacy,(0) + 02F (x(0), 6)

Theorem ([Gilbert 92, Prop. 1])
If F is p-Lipschitz (p < 1) and 0 ,..(01F) < 1, then

lim Jac,,(0) = Jacz(0) = Jacim,_, .. x.(?)

t—+400

Condition omax(01F) < 1 is sufficient but not necessary

16

autodiff - Jac,, (6)

t — 400

0)

N

Jack

X1

17

Implicit differentiation

Fixed-point equation

xe11(0) = F(x(0),0) = x(0) = F(x(0),0)

Differentiation of fixed-point equation
Jacg(0) = 01F(x(0),0) Jacz(0) + O2F (x:(0), 0)
Implicit function theorem (assuming invertibility of Id —8>)
Jacz(0) = (I1d —02F (x(0), 6)) 01 F(x(6),0)

Proposition (Autodiff = implicit differentiation)
If F is p-Lipschitz (p < 1) and 0 ,,..(01F) < 1, then

t—IiToo Jacy,(0) = Jacim, ., .. x.(0) = (Id =02 F (x(0),0)) " *o1 F(x(0), 0)
18

Entropic OT and Sinkhorn—-Knopp algorithm

Parametric entropic optimal transport

P(0) = argmin (P, C(0))—£(0) Ent(P) where U(0) = { PeRI™ . Pl, = a(d) }

PEU(0) PT1, = b(H)
(0Ty)
Sinkhorn algorithm = matrix scaling
a(?) b(?)
) = —~2 d e i S—
Ut+1() K(a)vt((_)) an Vt+1(6) K(Q)TUH-]_(Q)’ (SK‘/’)

Current optimal plan at time ¢

P:(0) = diag(u:(0))K(0) diag(ve(F)) where K;j(0) = exp (— Cg'dé?)) >0,

19

Sinkhorn as a fixed point algorithm

2 0) = F(x(0),0 duced “log” variabl
P(0) = argmin £(P,0) and t(?) = F(xt(0),0) reduced "log” variable
PeU(0) P:(0) = P(x:(0),0) transport plan
F(x, 0) = log a(6) — log <;<(0) ” f’((z))e\> and P(x, 0) = *K(6) diag <K b((:))sx>
Theorem ([Franklin & Lorenz '89]) Fact o _
P.(0) converges (linearly) towards P(0). For all t, 0 — P(0) is differentiable.

BUT
omax(01F(x,0)) =1

= can't apply directly [Gilbert '92]
20

Convergence of the derivatives of Sinkhorn

2 0) = F(x¢(0),0 duced “log” iabl
P(0) = argmin £(P,0) and t(?) = F(xt(0),0) reduced "log” variable
PEU(6) P:(0) = P(x(9),0) transport plan

Theorem ([Pauwels-V. 2022])
Assume that a, b, C,e are C?. Then,

e The optimal coupling Pis Ct (with an implicit equation linked to X)
e The AD iterates P; is C' and de converges at a linear rate, locally uniformly in 0.

e We have .
dP; dP

lim —(0) = %(0)

t—+oo df

Main intuition: x; is equivariant w.r.t u = exp(x), and so does P.
21

Elephant in the room

ReLU(t)

22

Elephant in the room

ReLU(t)

D
\d

nonsmooth

22

autodiff - Jacy (6)

X1

X1

autodiff

- Jac,,(6)

=~ V V.~ V O V V V

from jax.nn import relu
from jax import grad
grad(relu) (0.0)

.0

grad (lambda x: relu(-x) + x)(0.0)

.0

grad (lambda x:
relu(-x) + x - relu(x))(0.0)

23

Conservative gradient = Subdifferential compatible with the chain rule

Definition (Conservative gradient [Bolte & Pauwels 2020,)
f:R" — R locally Lipschitz. J:R" = R", closed, nonempty, locally bounded. f is

path-differentiable with conservative gradient J if for any Lipschitz curve
~v:[0,1] = R", for all v € J(7(t))

d _ chain rule
LF(D) = (v, 4(1)) ae te01]

along Lipschitz curve

Proposition
1. The Clarke subdifferential is minimal for conservative gradient: 9°f(x) C J(x)
2. The conservative gradient is reduced to J(x) = {Vf(x)} a.e. (Radamacher)

3. Path-differentiability is compatible with sum and composition

24

AD of nonsmooth iterative programs

Nonsmooth iterations: F path-differentiable and x¢11(0) = F(x¢(0), 9).

Here, nonsmooth does not mean that we minimize nonsmooth functions!

Smooth minimization problem, h € C!

xrgllé]” h(X)

Nonsmooth algorithm

where

Xt4+1 = Xt — PVh(Xt)
= F(Xtap)

F(x,p) = x — pVh(x)

Smooth minimization pb, h € C?

XrEIIRD" h(X)

Smooth algorithm

Xt+1 = Xt — PVh(Xt)
= F(th)

where
F(x,p) = x — pVh(x) e

AD of nonsmooth iterative programs

Nonsmooth iterations: F path-differentiable and x¢11(0) = F(x¢(0), 9).

Set-valued piggyback recursion

J

Xt+1

(6) = {AJ+ B : [A B] € Je(xe(6),6), J € (o}

AD frameworks gives an element Jyy1 = ArJs + Bt where [A¢, Bt] € Jr(x:(0), 6)

Intuition: [A, B] is the “nonsmooth total derivative”

A= 81F(xt(0), 9) and B = agF(Xt(Q), 9)

26

nonsmooth

X

autodiff

derivative?

limit?

e 7277

27

Main result: limit-derivative exchange

Assumption A: Jr contracts w.r.t. x. Theorem ([Bolte—Pauwels-V. 2022])
There exists 0 < p < 1, such that for Under Assumption A, J2° is a conservative
any (x,) and any conservative gradient Jacobian for X and

[A, B] € Je(x,0) (or at least locally),
tle gap(JXt(0)7 ng(e)) =0.
Umax(A) < p,

Limit candidate

PP 0 = fix [Jp(%(6), 0)]
= fix [Je (fix(F (-, 0)), 0)]
Gap between compact subsets
FEIEE V) = mepelbs V) wiee elpsd) = o b ol
28

X1
/S

)
N

nonsmooth
- Xt(e)

autodiff

t — 400

25 (0)

X

fix|Jr (Fix(F (-, 0), 0))]
=x(0)

29

Main result: limit-derivative exchange

Assumption A: Jr contracts w.r.t. x. Theorem ([Bolte—Pauwels-V. 2022])
There exists 0 < p < 1, such that for Under Assumption A, JE° is a conservative
any (x,) and any conservative gradient Jacobian for X and

[A, B] € Je(x,0) (or at least locally),
tle gap(JXt(0)7 ng(e)) =0.

Umax(A) <p,

.. } Moreover, for almost all 9,
Limit candidate

li J Xt 0)=1J X 0).
JE: 6 = fix [J (%(6), 0)] Jim_Jac,.(8) = Jacx(6)

= fix [Je (fix(F (-, 0)), 0)]
Gap between compact subsets
FEIEE V) = mepelbs V) wiee elpsd) = o b ol

30

nonsmooth , Jacxt(ﬁ)

X1

autodiff
3
+
/[\
5 - Jacz(0)
00

almost everywhere

31

Main result: quantitative version

Assumption A: Jr contracts w.r.t. x. Theorem ([Bolte—Pauwels-V. 2022])
There exists 0 < p < 1, such that for Under Assumption A, J2° is a conservative
any (x,) and any conservative gradient Jacobian for X and

[A, B] € Je(x,0) (or at least locally),
tle gap(JXt(0)7 ng(e)) =0.

Umax(A) <p,

.] If moreover, F has a Lipschitz gradient
Limit candidate : o . .
selection (= piecewise semialgebraic), then the

BP0 = fix [Jp(%(6), 0)] convergence is linear

= fix[Jr(fix(F(, 6)), 6)] gap(Ju, (6), 12°(0)) < p*/°

Gap between compact subsets

X = h — mi _
gap(X,)) rx‘rjsa?d(x,y) where d(x,)) }I‘/T;I?}HX vl 30

Nonsmooth implicit differentiation

Fixed-point equation

xei1(6) = F(x(6).0) — X(0) = F(X(6),6)

Implicit function theorem (qualification-free) [Bolte et al. 2021] Assuming that | — A is
invertible for all [A, B] € Jr(x(0),0)

g = {(1— A)TIB ¢ [A B] € Je(x(6),6)}

is a conservative Jacobian for Xx.

83

NONSMOOTH

Nonsmooth implicit differentiation

Fixed-point equation
xe11(0) = F(x(0),0) = x(6) = F(x(6),0)
Implicit function theorem (qualification-free) [Bolte et al. 2021] Assuming that / — A is
invertible for all [A, B] € Jr(x(0),6)
P9 = {(1—- A)7IB ¢ [A,B] € JE(x(6),6)}
is a conservative Jacobian for X.

In general,

imp - pb
Jo CJe.
Implicit differentation may fail to capture the output of autodiff

34

Consequences for VJPs and JVPs

Forward mode (JVP): Reverse mode (VJP): §; = 0.
X0 = J6, J € (). fori=1,...,tdo
fori=1,...,tdo x;i = F(xj_1,6)
xi = F(xj-1,0) fori=t,...,1do
X = Ai_1Xi—1 + Bi_10 0 =0+ BT, w; wi_1=Al W
[Ai—1, Bi—1] € JF(xi-1,0) [Ai—1, Bi—1] € JF(xi-1,0)
Return: x; 0, =0+ JTwp, J € o (0)
Return: 6,

Proposition .
Under Assumption A, for almost all 0 € R™, x; — g—;@.

Assume furthermore that, as t — 0o, Wy — W (for example, W, = V{(x;) for a C* loss £),

then for almost all 6 € R™,] — wT 9%.
35

Empirical observations

Ridge (FB) Lasso (FB) Sparse Inv. Covar. (DR) Trend Filtering (ADMM)

__ 10" 1074 B
? 10714 10~
£ 107 10-44 3] ‘
8 0 10 103

0 500 1000 0 500 1000 " 0 500 1000 0 500 1000
2. 1001 \
=107 10714 10-1]

L 10

<1074 10731 10724

0 500 1000 0 500 1000 0 500 1000 0 500 1000

iteration k iteration k iteration k iteration k

e FB: Forward—Backward
e DR: Douglas—Rachford
e ADMM: Alternating Direction Method of Multipliers

36

When nonsmoothness hurts: momentum methods

Heavy-ball method [Polyak '87]

(Xt+1,yev1) = F(xt,y:,0) where F(x,y,0) = x —aVfy(x) + B(x — y)

If (x;) converges and fy is C2, then Jac,, converges [Griewank & Faure 2003,

Mehmood & Ochs 2020]

But the situation is different for C** functions (left GD, right HB) (example)
= 2001
(=]
5 0.51 5 AA
2 = -
—200 1
0.01—, ; - - . , , , , ,
100 150 200 0 50 100 150 200
iteration k

iteration k

37

Conclusion

AD is a convergent process (under strong assumptions) even in the nonsmooth case.

Open problems

e How to handle in general AD of F such that omax(01F) = 17
e How to handle stochastic algorithms F(x,6;¢), £ ~ u?

Related papers:

e Bolte, Pauwels, V. Automatic differentiation of nonsmooth iterative algorithms. NeurlPS. 2022
e Pauwels, V. The derivatives of Sinkhorn-Knopp converge. SIAM J. Opt. 2023
e Bolte, Pauwels, V. One-step differentiation of iterative algorithms. NeurlPS. 2023

We are looking for a M2 intern to extend these results to stochastic settings!

38

Behind the scene: fixed-point theorem for set-valued mapping

Theorem ([Bolte-Pauwels-V 2022])
Let J c RP*(PtM) pe a compact subset of matrices with p < 1. Then there is a

unique nonempty compact set fix(J) C RP*™ satisfying fix(J) = J (fix(J)), where
the action of J is given by

J(X)={AX + B, [A Bl € J, X € X}.

Let (Xt)ten be a sequence of compact subsets of RP*™, such that Xy # (), and
satisfying the recursion

Xt+1 = j(Xt) Vt € N
We have for all t € N

¢ diSt(Xo, j(Xo))

1—0p 39

dist(X:, fix(T)) < p

Lipschitz gradient selection

Definition ([Bolte—Pauwels 2020])
Let F — RP — R9 be semialgebraic and continuous. We say that F has a Lipschitz

gradient selection (s, F1,..., Fy) if s: RP — (1,..., m) is semialgebraic and there
exists L > 0 such that for i =1...,m, F;: R? — RP is semialgebraic with L-Lipschitz
Jacobian, and for all x € RP, F(x) = Fs(x).

For any x € RP, set I(x) = {i € {1,...,m}, F(x) = Fi(x)}. The set-valued map
Jz: RP = RP*9 given by J3: x =3 conv {%i” (x), i€ /(x)}) is a conservative
OF,

Jacobian for F. Here 5 denotes the classical Jacobian of F;.

40

Example where heavy-ball fails

Piecewise quadratic independant from 6

x?/2 ifx>0

f(x,0) =
(a6) x?/8 if x <O0.

Heavy-ball
F(x,y,0) = x —aVify(x)+ B(x —y) where a=1and = %

Proposition
HB converges globally to 0 and V F is path differentiable.

Je(0,0,0) = conv { My, Mp},

where the product My My My M, has eigenvalue —9/8.
a1

